Chapter 13: Springs

Outline

- Spring Functions & Types
- Helical Springs
 - Compression
 - Extension
 - Torsional

The Function(s) of Springs

Most fundamentally: to STORE ENERGY

Many springs can also: push pull twist

Some Review

Some Review

\[k = \frac{F}{y} \]

Parallel

\[k_{total} = k_1 + k_2 + k_3 \]

Series

\[\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} \]

Types of Springs

Helical:

- Standard constant rate
- Variable pitch rate
- Conical

Compression

Extension

Torsion

More Springs

Washer Springs:

Beams:

Power springs:
Helical Compression Springs

- Number of coils: N_t
- Diameter of wire: d
- Mean coil diameter: D
- Free length: L_f
- Pitch: p
- Total coils: N_t

May also need: D_o and D_i

Length Terminology

- Free Length: L_f
- Assembled Length: L_a
- Max Working Load: L_m
- Bottomed Out: L_s

End Conditions

- Plain
- Plain Ground
- Square
- Square Ground

$N_a = \text{Active Coils}$

Stresses in Helical Springs

- Spring Index: $C = \frac{D}{d}$
- Typically: $4 \leq C \leq 12$

$\tau_{\text{max}} = K_w \frac{8FD}{nd^2}$, where $K_w = \frac{2C+1}{2C}$

K_w includes both the direct shear factor and the stress concentration factor.

- Under static loading, local yielding eliminates stress concentration, so use K_s
- Under dynamic loading, failure happens below S_y: use K_s for mean, K_w for alternating

Curvature Stress

Inner part of spring is a stress concentration

K_w includes both the direct shear factor and the stress concentration factor.

$\tau_{\text{max}} = K_w \frac{8FD}{nd^2}$, where $K_w = \frac{4C-1}{4C-4} \cdot 0.615 \frac{C}{d}$

- Under static loading, local yielding eliminates stress concentration, so use K_s
- Under dynamic loading, failure happens below S_y: use K_s for mean, K_w for alternating

Spring Deflection

$y \approx \frac{8FD^3N_a}{d^4G}$
Spring Rate

\[y \approx \frac{8FD^3Na}{d^4G} \]
\[k = \frac{d^4G}{8D^3Na} \]

Helical Springs

- Compression
 - Nomenclature
 - Stress
 - Deflection and Spring Constant
 - Static Design
 - Fatigue Design
- Extension
- Torsion

Static Spring Design

- Inherently iterative
 - Some values must be set to calculate stresses, deflections, etc.
- Truly Design
 - There is not one “correct” answer
 - Must synthesize (a little bit) in addition to analyze

Material Properties

- \(S_{ut} \) ultimate tensile strength
 - Figure 13-3
 - Table 13-4 with \(S_{ut} = Ad^b \)
- \(S_{ys} \) torsional yield strength
 - Table 13-6 – a function of \(S_{ut} \) and set

Spring/Material Treatments

- Setting
 - Overstress material in same direction as applied load
 - Increase static load capacity 45-65%
 - Increase energy storage by 100%
 - Use \(K_s \) not \(K_y \) (stress concentration relieved)
- Load Reversal with Springs
- Shot Peening
 - What type of failure would this be most effective against?

What are You Designing?

<table>
<thead>
<tr>
<th>Given</th>
<th>Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F, y)</td>
<td>(k)</td>
</tr>
<tr>
<td>(k, y)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

Such that:
- Safety factor \(s > 1 \)
- Spring will not buckle
- Spring will fit in hole, over pin, within vertical space

* - Often can calculate from given
** - Often given/defined
Static Spring Flow Chart

if GIVEN F, y, then find k; if GIVEN k, y, then find F

- \(D, K_p, K_m \)
- material strengths
- \(N_s = \frac{F}{\tau} \)
- for shut spring if possible
- if not, for max working load

if GIVEN \(F, y \), then find \(k \); If GIVEN \(k, y \), then find \(F \)

- \(D, K_s, K_w \)
- material strengths

Three things to know:
- effect of \(d \)
- shortcut to finding \(d \)
- how to check buckling

ITERATE?

Check:
- buckling, \(N_{shut}, D_i, D_o \)

\(N_{shut} = \frac{F_{sys}}{\tau_{shut}} \)

Helical Springs

- Compression
- Nomenclature
- Stress
- Deflection and Spring Constant
- Static Design
- Fatigue Design
- Torsion

Material Properties

- \(S_{utt} \) ultimate shear strength
 - \(S_{utt} = 0.67 S_u \)
- \(S_{utw} \) torsional fatigue strength
 - Table 13-7 -- function of \(S_{utt} \), # of cycles
 - repeated, room temp, 50% reliability, no corrosion
- \(S_{tw} \) torsional endurance limit
 - for steel, \(d < 10 \text{mm} \)
 - see page 816 (45 ksi (310 MPa) if unpeened,
 - =67.5 ksi (465 MPa) if peened)
 - repeated, room temp., 50% reliability, no corrosion

Modified Goodman for Springs

- \(S_{uts}, S_{utw} \) are for torsional strengths, so von Mises not used

\[S_{fi} = 0.5 \left(\frac{S_{uts} S_{utw}}{S_{uts} - 0.3(S_{uts})} \right) \]
Fatigue Safety Factor

\[\tau_a \]

\[N_f = \frac{S_{a}}{\tau_a} \]

Fatigue Spring Design Strategy

if GIVEN F, y, then find k; If GIVEN k, y, then find F

STRESSES

\[N_y = \frac{f_x(S_{a} - \tau_i)}{f_y(S_{a} - \tau_i) + f_y} \]

DEFLECTION

\[L = X_{max} - F_{max} \]

ITERATE?

CHECK

Two things to know:
- shortcut to finding d
- how to check frequency

Fatigue Design: Wire Diameter

as before, you can iterate to find d, or you can use an equation derived from relationships that we already know:

\[d = \left(\frac{NCN \Delta F_{min}}{0.6742} \right) \left(K_{F} \left(N_{F} - 1 \right) - \left(1.3 \Delta d \right) \left(\frac{N_{F}}{N_{F_{min}}} \right) \right)^{1/2} \]

use Table 13-2 to select standard d near calculated d

Two things to know:
- shortcut to finding d
- how to check frequency

maintain units (in. or mm) for A, b

Natural Frequency: Surge

Surge == longitudinal resonance

for fixed/fixed end conditions:

\[f_s = \frac{1}{2} \sqrt{\frac{K_{F}}{W_{a}}} \] (Hz)

ideally, \(f_s \) will be at least 13\(x \) more than \(f_{s,\text{surge}} \), it should definitely be multiple times bigger

Two things to know:
- shortcut to finding d
- how to check frequency

...see pages 814-815 for more

What are you Designing?

Given

\[F_{\text{max}}, F_{\text{min}}, \gamma, k, \alpha \]

Find

\[k, \gamma, C, D', F, N_{\text{shut}}, \text{allowance (\alpha)}, \text{material}^{*} \]

Such that:

Fatigue Safety Factor is > 1
Shut Static Safety Factor is > 1
Spring will not buckle
Spring is well below natural frequency
Spring will fit in hole, over pin, within vertical space

* - often can calculate from Given
** - often given/defined

Review of Design Strategy

ITERATIVE

Find Loading
Select C, d

Find stresses
Determine material properties
Find safety factor

USING d EQUATION

Find Loading
Select C, safety factor

Solve for d, pick standard d
Find stresses
Determine material properties
Check safety factor
Strategy Review
Continued

- Find spring constant, N_a, N_t
- Find F_{SHUT} (must find lengths and y's to do this)
- Find static shut shear stress and safety factor

Check Buckling
Check Surge
Check D_i, D_o if pin to fit over, hole to fit in

Consider the Following:

Helical Springs
- Compression
 - Nomenclature
 - Stress
 - Deflection and Spring Constant
 - Static Design
 - Fatigue Design
- Torsion

Torsion Springs

Deflection & Spring Rate

\[
\theta_{rev} = \left(\frac{M}{EI} \right) \frac{\theta}{\theta_{rev}}
\]

\[
\theta_{rev,round} = 10.2 \left(\frac{M}{d^3} \right) \left(\frac{D_N}{d^4} \right)
\]

\[
k = \frac{M}{\theta_{rev}}
\]

Materials

see Tables 13-13 and 13-14, page 850

follow book on $S_{crit} = S_{crit} / 0.577...$ for now

Stresses

1. Static - Compressive is Max \(\sigma = K_b \frac{M_{\text{max}}}{d^3} \) - Inside of Coil

\[
\sigma_{\text{max}} = K_b \frac{32M_{\text{max}}}{\pi d^3}
\]

\[
K_b = \frac{4c^2 - C - 1}{4c(C + 1)}
\]

2. Fatigue - (since fatigue is a tensile stress phenomenon) - Outside of Coil

\[
\sigma_{\text{max}} = K_b \frac{32M_{\text{max}}}{\pi d^3}
\]

\[
\sigma_{\text{min}} = K_b \frac{32M_{\text{min}}}{\pi d^3}
\]

\[
K_b = \frac{4c^2 - C - 1}{4c(C + 1)}
\]
Strategy

Select C, d

• fit over pin (if there is one)
• don’t exceed stresses

Helical Springs

- Compression
- Nomenclature
- Stress
- Deflection and Spring Constant
- Static Design
- Fatigue Design
- Torsion