In general, whenever two parts have relative motion, they constitute a bearing by definition. Usually lubrication is needed in any bearing to reduce friction and remove heat. Bearings may roll or slide or do both simultaneously.

Types of Lubricants
- Oils
 - Flow easily (relatively low viscosity)
 - Easy to add additives to
- Greases
 - Thicker
 - Cannot be cycled through system
- Solid Films
 - Low coefficient of friction
 - High temperature resistance

Viscosity
- Viscosity is a measure of fluid's resistance to shear.
- Viscosity, \(\eta \), for fluids is analogous to shear modulus, \(G \), for solids
- Units
 - English—lbf-s/in² (reyn) generally micro-reyn
 - Metric—N-s/m² (Pascal-second) generally cP (centipoise), mPa-s (milli-Pascal-second)
- Kinematic Viscosity \((\nu)=\eta/\rho \) \(\rho \): density
- See Figure 10-1 (pp. 625)

Temperature and Pressure Effects on Viscosity
- Temperature increases, viscosity decreases
- Pressure increases, viscosity increases
Types of Sliding Bearings

- Journal or sleeve
 - No thrust resistance
- Thrust
 - Capable of supporting end loads

Types of Lubrication

- Full Film: bearing surfaces are fully separated by a film of lubricant, eliminating any contact.
 - Hydrostatic
 - Continuous flow of lubricant to the sliding interface
 - e.g. air hockey, hovercraft
 - $f=0.002-0.010$

Type of Lubrication

- Hydrodynamic:
 - The most effective technique in journal bearings.
 - The relative velocity of the mating surfaces pumps the lubricant to the gap.
 - Surface wear does not occur
 - Film thicknesses 0.008-0.020 mm
 - $f=0.002-0.010$
- Mixed Film
 - Combination of partial lubricant film plus some asperity contact between the surfaces.
 - $f=0.004-0.10$
- Boundary
 - Continuous surface contact
 - Lubricant smeared over surface
 - $f=0.05-0.20$

Desired Properties of Bearing Materials

- Embeddability or indentation softness—embedding of particles
- Low shear strength—material flow
- Sufficient Compressive and fatigue strength—support load and endure repeated flexing
- High heat conductivity—conduc heat away
- Coefficient of thermal expansion similar to journal and housing
- Corrosion resistance—avoid oxidation

Common materials: babbitts (alloys based on lead and tin), copper alloys, aluminum, silver
Basic Concepts of Hydrodynamic Lubrication

- See figure 10-3 (pp. 627)
- Journal tries to climb bearing wall
- Simultaneously, it forces fluid down into crevice
- Pressure increases at interface and "floats" journal
- Eccentricity of journal "e" is the distance between resting cg and floating cg.

Basic Concepts of Hydrodynamic Lubrication

Design of hydrodynamic bearing involves finding a suitable combination of bearing diameter and/or length that will operate with a suitable viscosity and reasonable clearance.

- Higher viscosity
 - Journal floats at lower velocity
 - Friction increases
- Higher rotating speed
 - Lower viscosity is needed to float
 - Once floating, increasing speed increases friction

Petroff’s Equation

- Assumes ideal case:

Petroff’s equation for no-load torque

- No eccentricity (concentric journal and bearing)
- No transverse load
- No axial lubricant flow

\[
T_s = \frac{d}{2} \left(\frac{d}{2} \frac{U}{h} \right) \eta \tau = \frac{d}{2} \eta (\delta l) (l m) \left(\frac{\pi}{h} \right)
\]

Bearing Unit Load

- \(W/dL \)
- Smaller bearing unit load
 - lower viscosity and speed are needed to float bearing
 - lowering bearing load beyond floating does not lower bearing friction