Rolling-Element Bearings

- Types
 - Ball Bearings
 - Roller Bearings

- Selection of rolling-element bearings

Comparing Rolling to Journal

- Rolling Bearing are better because:
 - low starting and good operating friction
 - radial and thrust loads
 - no self-excited instabilities
 - less space axially
 - can seal lubricant in bearing

- Journal Bearings are better because:
 - fatigue failure not a problem
 - less space radially
 - less noise
 - more tolerant to misalignment
 - less expensive, except for oiling system
 - less operating friction

Ball Bearings vs Roller Bearings

<table>
<thead>
<tr>
<th>Ball Bearings versus Roller Bearings</th>
<th>Ball</th>
<th>Roller</th>
</tr>
</thead>
<tbody>
<tr>
<td>High speed</td>
<td>Higher radial load support</td>
<td></td>
</tr>
<tr>
<td>Axial thrust</td>
<td>Usually separable</td>
<td></td>
</tr>
</tbody>
</table>

A) Ball Bearings

- good for smaller sizes, lighter loads
B) Roller Bearings

- good for larger sizes, heavier loads
- handle shock and impact loading well

![Roller Bearings Image]

Rolling Element Comparisons

Selection of Rolling Element Bearings

Once a bearing type suited to the application is chosen, selection of appropriate-size bearing depends on the magnitude of loads and the desired fatigue life.

Basic Dynamic Load Rating (C):

$$ L = \left(\frac{C}{P} \right)^{1/3} $$

- Ball Bearings
- Roller Bearings

L = Expected bearing life (expressed in millions of revolutions)
C = Dynamic load rating (Capacity)
P = Constant applied load

Basic Static Load Rating (C_0):

see Figure 10-23, pp. 662 for Ball Bearings

Rolling Element Analysis

- Calculate P
- Specify the number of cycles
- Calculate C
- Choose a bearing from the manufacturer’s catalog based on C, C_0

Selection of Rolling Element Bearings

Combined Radial and Thrust Loads:

$$ P = XVF_r + YF_a $$

If

$$ \frac{F_a}{F_r} \leq e $$

then $X = 1$ and $Y = 0$

X = Radial factor (see Figure 10-24)
Y = Thrust factor (see Figure 10-24)
V = Rotation factor (see Figure 10-24)
F_r = Radial load
F_a = Axial load
e = Minimum ratio between axial and radial loads (see Figure 10-24)

Bearing Selection

Ex: Figure 10-23
Dimensions and Load Ratings for 6300 Series Ball Bearings (FAG Bearings Corp.)