Strategic Form Games

- It is used to model situations in which players choose strategies without knowing the strategy choices of the other players
- Also known as normal form games

Definition (strategic form game)

A **strategic form game** is composed of:

- Set of players: \(N = \{1, 2, \ldots, n\} \)
- A set of strategies: \(S_i \) for each player \(i \)
- A payoff function: \(u_i : S \rightarrow \mathbb{R} \) for each player \(i \)

It is denoted by \(G = (N, (S_i)_{i \in N}, (u_i)_{i \in N}) \)

An outcome (or a strategy profile) \(s = (s_1, \ldots, s_n) \) is a collection of strategies, one for each player.

Outcome space

\[S = \times_{i \in N} S_i = \{ (s_1, \ldots, s_n) : s_i \in S_i, i = 1, \ldots, n \} \]

Remarks

- We will sometimes write \(G = (N, (S_i), (u_i)) \), or simply \(G \)
- Payoff functions represent preferences over the set of outcomes and are ordinal (for now)
- If \(S_i \) is finite for all \(i \in N \), then the game is called a **finite game**
- The game is **common knowledge**
- Finite strategic form games with two players can be represented by a bimatrix

Prisoners’ Dilemma

- \(N = \{1, 2\} \)
- \(S_i = \{C, N\}, i = 1, 2 \)

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td>C</td>
<td>-5, -5</td>
<td>0, -6</td>
</tr>
<tr>
<td>N</td>
<td>-6, 0</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

The following also represents the same game whenever \(a < b < c < d \).
Other Examples

Hawk-Dove

<table>
<thead>
<tr>
<th>Player 1</th>
<th>D</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3.3, 1.5</td>
<td>5.1, 0.0</td>
</tr>
</tbody>
</table>

Stag Hunt

<table>
<thead>
<tr>
<th>Player 1</th>
<th>S</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2.2, 0.1</td>
<td>1.0, 1.1</td>
</tr>
</tbody>
</table>

Guessing Game

- There are n players: $N = \{1, 2, \ldots, n\}$
- Each player picks a number between 1 and 99:
 $$S_i = \{1, 2, \ldots, 99\} \text{ for all } i \in N$$
- A player wins if her number is (among the) closest to $2/3$ of the average
 $$u_i(s_1, \ldots, s_n) = \begin{cases} 1, & |s_i - \frac{2}{3} \bar{s}| \leq |s_j - \frac{2}{3} \bar{s}| \text{ for all } j = 1, \ldots, n \\ 0, & \text{otherwise} \end{cases}$$
 where
 $$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} s_i$$

Matching Pennies

<table>
<thead>
<tr>
<th>Player 1</th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1, 1</td>
<td>1, -1</td>
</tr>
</tbody>
</table>

Levent Kocşesen (Kocş University)

Nash Equilibrium

5 / 40

Other Examples

Battle of the Sexes

<table>
<thead>
<tr>
<th>Player 2</th>
<th>B</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Matching Pennies

<table>
<thead>
<tr>
<th>Player 2</th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1, -1</td>
<td>1, 1</td>
</tr>
</tbody>
</table>

Levent Kocşesen (Kocş University)

Nash Equilibrium

6 / 40

Guessing Game

- There are n players: $N = \{1, 2, \ldots, n\}$
- Each player picks a number between 1 and 99:
 $$S_i = \{1, 2, \ldots, 99\} \text{ for all } i \in N$$
- A player wins if her number is (among the) closest to $2/3$ of the average
 $$u_i(s_1, \ldots, s_n) = \begin{cases} 1, & |s_i - \frac{2}{3} \bar{s}| \leq |s_j - \frac{2}{3} \bar{s}| \text{ for all } j = 1, \ldots, n \\ 0, & \text{otherwise} \end{cases}$$
 where
 $$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} s_i$$

Levent Kocşesen (Kocş University)

Nash Equilibrium

7 / 40

Cournot Duopoly Model

- There are only two firms
- Inverse (market) demand function: $p(q_1 + q_2)$
 - $p : \mathbb{R}_+ \to \mathbb{R}_+$
 - $p' < 0$
- Cost function of firm $i = 1, 2$: $c_i(q_i)$
 - $c_i : \mathbb{R}_+ \to \mathbb{R}_+$
 - $c_i' > 0, c_i'' \geq 0$

The strategic form is given by
- $N = \{1, 2\}$
- $S_i = \mathbb{R}_+$
- $u_i(q_1, q_2) = p(q_1 + q_2)q_i - c_i(q_i)$ for each $(q_1, q_2) \in S$
Nash Equilibrium

- A solution concept for a strategic for game \(G = (N, (S_i)_{i \in N}, (u_i)_{i \in N}) \) is a strategy profile \(s \in S \)
- A Nash equilibrium is a strategy profile such that given the strategies of all the other players each player’s strategy maximizes her payoff
- Let
 \[
 s_{-i} = (s_1, s_2, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)
 \]
 \[
 (s'_i, s_{-i}) = (s_1, s_2, \ldots, s_{i-1}, s'_i, s_{i+1}, \ldots, s_n)
 \]
 \[
 S_{-i} = \times_{j \in N \setminus \{i\}} S_j
 \]

Definition (Nash Equilibrium)

A strategy profile \(s^* \in S \) is a Nash equilibrium of \(G = (N, (S_i)_{i \in N}, (u_i)_{i \in N}) \) if for each player \(i \in N \)

\[
 u_i(s^*_i, s^*_{-i}) \geq u_i(s'_i, s^*_{-i}) \quad \text{for all } s'_i \in S_i
 \]

The set of Nash equilibria is denoted \(\mathcal{N}(G) \)

Prisoners’ Dilemma (PD)

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-5, -5</td>
</tr>
<tr>
<td>N</td>
<td>-6, 0</td>
</tr>
</tbody>
</table>

- Is \((N, N) \) a Nash equilibrium?
- How about \((C, C) \)?
- \(\mathcal{N}(PD) = \{(C, C)\} \)

Best Response Correspondences

- One way to find Nash equilibria is to first find the best response correspondence for each player
 - Best response correspondence gives the set of payoff maximizing strategies for each strategy profile of the other players
 - ... and then find where they “intersect”

Definition (best response correspondence)

The best response correspondence of player \(i \in N \) is given by \(B_i : S_{-i} \rightarrow S_i \)

such that

\[
 B_i(s_{-i}) = \{ s_i \in S_i : u_i(s_i) \geq u_i(s'_i, s_{-i}) \text{ for all } s'_i \in S_i \}
 \]

Proposition

Let \(G = (N, (S_i)_{i \in N}, (u_i)_{i \in N}) \) be a strategic form game. A strategy profile \(s^* \in S \) is a Nash equilibrium of \(G \) iff for each player \(i \in N \)

\[
 s^*_i \in B_i(s^*_{-i})
 \]
Examples

Hawk-Dove

\[
\begin{array}{c|cc}
D & H \\ \hline
D & 3,3 & 1,5 \\
H & 5,1 & 0,0
\end{array}
\]

- \(B_1(D) = \{H\} \), \(B_1(H) = \{D\} \)
- \(B_2(D) = \{H\} \), \(B_2(H) = \{D\} \)
- \(N(HD) = \{(H,D),(D,H)\} \)

Battle of the Sexes

\[
\begin{array}{c|cc}
B & S \\ \hline
B & 2,1 & 0,0 \\
S & 0,0 & 1,2
\end{array}
\]

- \(B_1(B) = \{B\} \), \(B_1(S) = \{S\} \)
- \(B_2(B) = \{B\} \), \(B_2(S) = \{S\} \)
- \(N(BS) = \{(B,B),(S,S)\} \)

Nash Equilibria of Cournot Duopoly

Let

\[
p(q_1 + q_2) = \begin{cases}
 a - b(q_1 + q_2), & q_1 + q_2 \leq a/b \\
 0, & q_1 + q_2 > a/b
\end{cases}
\]

and for each \(i = 1,2 \)

\[
c_i(q_i) = cq_i
\]

where \(a > c \geq 0 \) and \(b > 0 \)

Therefore, payoff function of firm \(i = 1,2 \) is given by

\[
u_i(q_1, q_2) = \begin{cases}
 (a - c - b(q_1 + q_2))q_i, & q_1 + q_2 \leq a/b \\
 -cq_i, & q_1 + q_2 > a/b
\end{cases}
\]

Claim

Best response correspondence of firm \(i \neq j \) is given by

\[
B_i(q_j) = \begin{cases}
 \frac{a - c - bq_j}{2b}, & q_j < \frac{a-c}{b} \\
 0, & q_j \geq \frac{a-c}{b}
\end{cases}
\]

Proof.

- If \(q_2 \geq \frac{a-c}{b} \), then \(u_1(q_1, q_2) < 0 \) for any \(q_1 > 0 \). Therefore, \(q_1 = 0 \) is the unique payoff maximizer.
- If \(q_2 < \frac{a-c}{b} \), then the best response cannot be \(q_1 = 0 \) (why?). Furthermore, it must be the case that \(q_1 + q_2 \leq \frac{a-c}{b} \), for otherwise \(u_1(q_1, q_2) < 0 \). So, the following first order condition must hold

\[
\frac{\partial u_1(q_1, q_2)}{\partial q_1} = a - c - 2bq_1 - bq_2 = 0
\]

Similarly for firm 2.

Claim

The set of Nash equilibria of the Cournot duopoly game is given by

\[
N(G) = \left\{ \left(\frac{a-c}{3b}, \frac{a-c}{3b} \right) \right\}
\]

Proof.

Suppose \((q_1^*, q_2^*)\) is a Nash equilibrium and \(q_1^* = 0 \). Then, \(q_1^* = (a-c)/2b < (a-c)/b \). But, then \(q_2^* \notin B_i(q_i^*) \), a contradiction. Therefore, we must have \(0 < q_i^* < (a-c)/b \), for \(i = 1,2 \). The rest follows from the best response correspondences.
Cournot Nash Equilibrium

Existence of Nash Equilibrium

Definition (correspondence)

A correspondence \(\Gamma : X \rightrightarrows Y \) is any mapping that associates with each \(x \in A \) a subset \(\Gamma(x) \) of \(Y \).

Definition

\(\Gamma \) is **nonempty and convex-valued** if \(\Gamma(x) \) is nonempty and convex for each \(x \in X \).

Definition

\(\Gamma : X \rightrightarrows Y \) has a **closed graph** if, for all \(x \in X \),

\[x^m \to x, \ y^m \in \Gamma(x^m), \ y^m \to y \Rightarrow y \in \Gamma(x) \]

Theorem (Kakutani’s Fixed Point Theorem)

Let \(S \subseteq \mathbb{R}^n \) be a compact and convex set. If \(\Gamma : S \rightrightarrows S \) is a nonempty and convex-valued correspondence with a closed graph, then there exists an \(s \in S \) such that \(s \in \Gamma(s) \).

Proof.

Theorem (Nash’s Existence Theorem)

Let \(G = (N, (S_i)_{i \in N}, (u_i)_{i \in N}) \) be a strategic form game such that

- \(S_i \) is a nonempty, convex and compact subset of \(\mathbb{R}^{m_i} \),
- \(u_i \) is continuous on \(S_i \) and quasi-concave on \(S_i \), \(i = 1, \ldots, n \)

Then \(N(G) \neq \emptyset \).

Proof.

Define the correspondence \(B : S \rightrightarrows S \) by

\[B(s) \equiv \{ x \in S : x_1 \in B_1(s_1), x_2 \in B_2(s_2), \ldots, x_n \in B_n(s_n) \} \]

We will show that Kakutani’s theorem applies to \(B \).

- \(S \) is compact and convex (since each \(S_i \) is)
- \(B \) is nonempty-valued (Weierstrass’ theorem)
Nash Equilibrium

Proof (continued)

- B is convex-valued: Take any $x, y \in B(s)$. Then, for all $i \in N$, $u_i(x_i, s_{-i}) = u_i(y_i, s_{-i}) \geq u_i(s_i, s_{-i})$, for all $s_i \in S_i$. Quasi-concavity of u_i on S_i implies $\; u_i(\lambda x_i + (1 - \lambda)y_i, s_{-i}) \geq u_i(x_i, s_{-i}) \geq u_i(s_i, s_{-i}), \forall s_i \in S_i, \lambda \in [0, 1].$

Therefore, $\lambda x + (1 - \lambda)y \in B(s)$.

Proof (continued)

- B has closed graph: Take any $s^m \rightarrow s, b^m \rightarrow b, b^m \in B(s^m)$

Need to show: $b \in B(s)$.

Intuitively:

$\; u_i(b^m_i, s^m_{-i}) \geq u_i(x_i, s^m_{-i})$ for all $x_i \in S_i$

$(b^m_i, s^m_{-i}) \rightarrow (b_i, s_{-i})$ and $(x_i, s^m_{-i}) \rightarrow (x_i, s_{-i})$ imply $u_i(b_i, s_{-i}) \geq u_i(x_i, s_{-i})$ for all $x_i \in S_i$, by continuity of u_i.

Parametric Games

- Assume that $u_i : S \times \Theta \rightarrow \mathbb{R}$

Then the Nash equilibrium set would depend on Θ

- What happens to the equilibrium set as a result of small changes in Θ?

Proposition

Let $\Theta \neq \emptyset$ be a compact set in \mathbb{R}^k and let $S_i \neq \emptyset$ be a convex and compact subset of \mathbb{R}^M_i, $i = 1, \ldots, n$. Assume that $u_i : S \times \Theta \rightarrow \mathbb{R}$ is a continuous function which is quasi-concave on S_i and consider the game $G(\theta) \equiv (N, (S_i), (u_i(\cdot, \theta)))$, where $\theta \in \Theta$. Define the correspondence $\Gamma : \Theta \rightarrow S$ by $\Gamma(\theta) \equiv N(G(\theta))$. Then, Γ is a nonempty-valued correspondence with a closed graph.

Proof.

Exercise
Parametric Games: Example

- Let $A = [0, 1]$, $\Theta = [-1, 1]$, $u(x, \theta) = 1 + \theta x$
- Nash equilibrium correspondence:
 \[\Gamma[\theta] = \begin{cases}
 0, & \theta < 0 \\
 [0, 1], & \theta = 0 \\
 1, & \theta > 0
\end{cases}\]
- As $\theta \to 0$, Nash equilibrium of $G(\theta)$ converges to an equilibrium of $G(0)$
- There may exist other equilibria of $G(0)$

Symmetric Games

Definition

A strategic form game $G = (N, (S_i), (u_i))$ is called symmetric if $S_i = S_j$ and $u_i(s) = u_j(s')$ for all $i, j = 1, \ldots, n$ and all $s, s' \in S$ such that s' is obtained from s by exchanging s_i and s_j.

Prisoners’ Dilemma

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-5, -5</td>
<td>0, -1</td>
</tr>
<tr>
<td>D</td>
<td>-6, 0</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

Symmetric?

Battle of the Sexes

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>S</td>
<td>0, 0</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Symmetric?

Strict Nash Equilibrium

Definition

A strategy profile $s^* \in S$ is a strict Nash equilibrium of $G = (N, (S_i), (u_i))$ if for each player $i \in N$

\[u_i(s^*_i, s^*_{-i}) > u_i(s_i, s^*_{-i})\]

for all $s_i \in S_i$ with $s_i \neq s^*_i$

- Strict Nash equilibria are robust
- Not every game has a strict Nash equilibrium
- Not every Nash equilibrium is strict

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1, 1</td>
<td>0, 0</td>
</tr>
<tr>
<td>R</td>
<td>0, 0</td>
<td>0, 2</td>
</tr>
</tbody>
</table>

(U, L) is a strict Nash equilibrium
(D, R) is not
What happens if $u_1(U, R) = \varepsilon$, for any $\varepsilon > 0$?
Existence Again

Does the Matching Pennies game have a Nash equilibrium?

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(H)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

\[
\begin{array}{ccc}
1 & -1 & -1, 1 \\
-1, 1 & 1 & -1,
\end{array}
\]

How would you play?
You should try to be unpredictable
Choose randomly

Mixed Strategies

For any finite set \(X \) with \(m \) elements, let \(\Delta(X) \) denote the set of all probability distributions over \(X \)

\[
\Delta(X) = \{ \sigma \in \mathbb{R}_+^m : \sum_{k=1}^m \sigma_k = 1 \}\]

Definition (Mixed Strategies)
Let \(G = (N, (S_i), (u_i)) \) be a strategic form game. A mixed strategy \(\sigma_i \) for player \(i \in N \) is a probability distribution over \(S_i \), i.e., \(\sigma_i \in \Delta(S_i) \).

We assume that mixed strategies are independent across players.

Mixed Strategies

For any \(\sigma_i \in \Delta(S_i) \) and \(s_i \in S_i \), let \(\sigma_i(s_i) \) denote the probability assigned to strategy \(s_i \)

support of a mixed strategy is \(\text{supp}(\sigma_i) = \{ s_i \in S_i : \sigma_i(s_i) > 0 \} \)

A pure strategy is a degenerate mixed strategy

- This is the set of strategies that are played with positive probability
- It assigns probability one to only one member of \(S_i \), say \(s_i' \)
- We sometimes refer to it as \(s_i' \)

A mixed strategy profile: \(\sigma = (\sigma_1, \ldots, \sigma_n) \in \times_{i \in N} \Delta(S_i) \)

A mixed strategy profile induces a probability distribution \(p \) over the set of outcomes \(S \)

\[
p(s|\sigma) = \prod_{i \in N} \sigma_i(s_i)
\]

Let

\[
\Sigma_i = \Delta(S_i)
\]

\[
\Sigma = \times_{i \in N} \Delta(S_i)
\]

\[
\Sigma_{-i} = \times_{j \in N \setminus \{i\}} \Delta(S_j)
\]

Assume that players’ preferences are defined over lotteries on \(S \)
and that \(u_i \) is a von Neumann-Morgenstern utility function for each \(i \in N \)
so that they can be represented by the expected payoff function

\[
U_i(\sigma) = \sum_{s \in S} p(s|\sigma) u_i(s)
\]

= \[
\sum_{s \in S} \left(\prod_{j \in N} \sigma_j(s_j) \right) u_i(s)
\]

Definition
Let \(G = (N, (S_i), (u_i)) \) be a strategic form game. The mixed extension of \(G \) is given by \(\Gamma(G) = (N, (\Sigma), (U_i)) \).
Mixed Strategies

Claim

\(U_i \) is multilinear in each component of a strategy profile. For any \(j \in N, \sigma^_, \sigma^i \in \Sigma_j, \sigma^j \in \Sigma_i \), and \(\lambda \in [0, 1] \), the following is true:

\[
U_i(\lambda \sigma^i + (1 - \lambda) \sigma^j, \sigma^j) = \lambda U_i(\sigma^j, \sigma^j) + (1 - \lambda) U_i(\sigma^i, \sigma^j)
\]

Claim

Let \(s_i \) be a pure strategy and \(\sigma \) a mixed strategy profile. Then

\[
U_i(\sigma) = \sum_{s_i \in \Sigma_i} \sigma_i(s_i) U_i(s_i, \sigma^j)
\]

Theorem

Every finite strategic form game has a mixed strategy equilibrium.

Proof.

Exercise

- From now on we use Nash equilibrium and mixed strategy equilibrium interchangeably.
- If every player's strategy in a Nash equilibrium is a pure strategy we call it a pure strategy equilibrium.
- Matching pennies game does not have any pure strategy equilibrium.
- but by the above theorem it must have a (mixed strategy) Nash equilibrium.
- The following proposition is very useful in calculating mixed strategy equilibria.

Mixed Strategy Equilibrium

Definition

The set of mixed strategy equilibria of a finite strategic form game \(G \) is the set of Nash equilibria of the mixed extension of \(G \). In other words, \(\sigma^* \in \Sigma \) is a mixed strategy equilibrium of \(G \) if, and only if, for every \(i \in N \)

\[
U_i(\sigma^*) \geq U_i(\sigma_i, \sigma^*_{-i}), \text{ for all } \sigma_i \in \Delta(S_i)
\]

Definition (best response correspondence)

The best response correspondence of player \(i \in N \) is given by \(B_i : \Sigma_{-i} \rightarrow \Sigma_i \) such that

\[
B_i(\sigma_{-i}) = \{ \sigma_i \in \Sigma_i : U_i(\sigma) \geq U_i(\sigma'_i, \sigma_{-i}) \text{ for all } \sigma'_i \in \Sigma_i \}
\]

Proposition

Let \(G \) be a finite strategic form game. A mixed strategy profile \(\sigma^* \in \Sigma \) is a mixed strategy equilibrium of \(G \) if, and only if, for each player \(i \in N \) and for any \(s_i \in \text{supp}(\sigma^*_i) \)

\[
s_i \in B_i(\sigma^*_{-i})
\]

Proof.

\((\Rightarrow)\)

Let \(\sigma^* \) be a mixed strategy equilibrium. Suppose that for some player \(i \) and some \(s_i \in \text{supp}(\sigma^*_i) \) we have \(s_i \notin B_i(\sigma^*_{-i}) \), i.e., there exists \(s'_i \in S_i \) such that

\[
U_i(s'_i, \sigma^*_{-i}) > U_i(s_i, \sigma^*_{-i}).
\]

But then, player \(i \) can increase her payoff by shifting some probability from \(s_i \) to \(s'_i \), a contradiction.

\((\Leftarrow)\)

Suppose now that for each player \(i \in N \) and for any \(s_i \in \text{supp}(\sigma^*_i) \) we have \(s_i \notin B_i(\sigma^*_{-i}) \), but \(\sigma^* \) is not a mixed strategy equilibrium. Then, there is an \(i \in N \) and \(\sigma'_i \in S_i \) such that

\[
U_i(\sigma'_i, \sigma^*_{-i}) > U_i(\sigma^*_i, \sigma^*_{-i}).
\]

But then, there must be a \(s'_i \in \text{supp}(\sigma^*_i) \) and \(s_i \in \text{supp}(\sigma^*_i) \) such that \(U_i(s'_i, \sigma^*_{-i}) > U_i(s_i, \sigma^*_{-i}) \), a contradiction.
Matching Pennies

- Suppose σ^* is a Nash equilibrium of this game.
 - It must be that $\text{supp}(\sigma^*_i) = \{H, T\}, i = 1, 2$. Why?
 - By the above proposition $U_1(H, \sigma^*_2) = U_1(T, \sigma^*_2)$ or
 \[
 \sigma^*_2(H) \times 1 + (1 - \sigma^*_2(H)) \times (-1) = \sigma^*_2(H) \times (-1) + (1 - \sigma^*_2(H)) \times 1
 \]
 which implies $\sigma^*_2(H) = 1/2$
 - Similarly, we have $\sigma^*_1(H) = 1/2$. So,
 \[
 N(MP) = \left\{ \left(\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}\right) \right\}
 \]

Mixed and Pure Strategy Equilibria

- How do you find the set of all (pure and mixed) Nash equilibria?
- In 2×2 games we can plot the best response correspondences and find where they intersect.
- Consider the Battle of the Sexes game

\[
\begin{array}{c|cc}
B & S \\
\hline
B & 2, 1 & 0, 0 \\
S & 0, 0 & 1, 2 \\
\end{array}
\]

- Simplify notation: $p = \sigma_1(B)$ and $q = \sigma_2(B)$

Player 1’s best response:

- What is Player 1’s best response?
 - Expected payoff to
 - If $2q > 1 - q$ or $q > 1/3$ then the best response is B (or equivalently $p = 1$)
 - If $2q < 1 - q$ or $q < 1/3$ then the best response is S (or equivalently $p = 0$)
 - If $2q = 1 - q$ then she is indifferent
 - Player 1’s best response correspondence:
 \[
 B_1(q) = \begin{cases}
 \{1\} & \text{if } q > 1/3 \\
 [0, 1] & \text{if } q = 1/3 \\
 \{0\} & \text{if } q < 1/3
 \end{cases}
 \]

Player 2’s best response:

- What is Player 2’s best response?
 - Expected payoff to
 - If $p > 2(1 - p)$ or $p > 2/3$ then the best response is B (or equivalently $q = 1$)
 - If $p < 2(1 - p)$ or $p < 2/3$ then the best response is S (or equivalently $q = 0$)
 - If $p = 2(1 - p)$ then she is indifferent
 - Player 2’s best response correspondence:
 \[
 B_2(p) = \begin{cases}
 \{1\} & \text{if } p > 2/3 \\
 [0, 1] & \text{if } p = 2/3 \\
 \{0\} & \text{if } p < 2/3
 \end{cases}
 \]
\[B_1(q) = \begin{cases}
\{1\}, & \text{if } q > \frac{1}{3} \\
[0, 1], & \text{if } q = \frac{1}{3} \\
\{0\}, & \text{if } q < \frac{1}{3}
\end{cases} \]

\[B_2(p) = \begin{cases}
\{1\}, & \text{if } p > \frac{2}{3} \\
[0, 1], & \text{if } p = \frac{2}{3} \\
\{0\}, & \text{if } p < \frac{2}{3}
\end{cases} \]

Set of Nash equilibria:
\[\{(0, 0), (1, 1), (2/3, 1/3)\} \]