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A First Course in Finite Elements 

 
Introduction 

The finite element method has become a powerful tool for the numerical so-
lution of a wide range of engineering problems. Applications range from deforma-
tion and stress analysis of automotive, aircraft, building, and bridge structures to 
field analysis of heat flux, fluid flow, magnetic flux, seepage, and other flow prob-
lems.  

With the advances in computer technology and CAD systems, complex prob-
lems can be modeled with relative ease. Several alternative configurations can 
be tried out on a computer before the first prototype is built. All of this suggests 
that we need to keep pace with these developments by understanding the basic 
theory, modeling techniques, and computational aspects of the finite element 
method.  

In this method of analysis, a complex region defining a continuum is discre-
tized into simple geometric shapes called finite elements. The material proper-
ties and the governing relationships are considered over these elements and ex-
pressed in terms of unknown values at element corners. An assembly process, 
duly considering the loading and constraints, results in a set of equations. Solu-
tion of these equations gives us the approximate behavior of the continuum. 

 
Historical Background 

Basic ideas of the finite element method originated from advances in aircraft 
structural analysis. In 1941, Hrenikoff presented a solution of elasticity problems 
using the “frame work method.”  Courant’s paper, which used piecewise polyno-
mial interpolation over triangular subregions to model torsion problems, appeared 
in 1943. Turner et al. derived stiffness matrices for truss, beam, and other ele-
ments and presented their findings in 1956. The term finite element was first 
coined and used by Clough in 1960. 

In the early 1960s, engineers used the method for approximate solution of 
problems in stress analysis, fluid flow, heat transfer, and other areas. A book by 
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Argyris in 1955 on energy theorems and matrix methods laid a foundation for fur-
ther developments in finite element studies. The first book on finite elements by 
Zienkiewicz and Chung was published in 1967. In the late 1960s and early 
1970s, finite element analysis was applied to nonlinear problems and large de-
formations. Oden’s book on nonlinear continua appeared in 1972. 

Mathematical foundations were laid in the 1970s. New element development, 
convergence studies, and other related areas fall in this category. 

Today, developments in mainframe computers and availability of powerful mi-
crocomputers have brought this method within reach of students and engineers 
working in small industries. 

 
Stress and Equilibrium 

Consider a three-dimensional body of volume V having a surface S: 

 
A point in the body is located by x, y, and z coordinates. On part of the 

boundary, a distributed force per unit area T, also called traction is applied. Un-
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der the force, the body deforms. The deformation of a point x (x, y, z) is given by 
the three components of its displacement vector: 

[ ]Twvu ,,=u  
The distributed force per unit volume is given by force vector: 

[ ]Tzyx FFF ,,=F  

The traction T is given by its components at points along the surface: 

[ ]Tzyx TTT ,,=T  

A load Pi acting at a point i is given by its three components: 

[ ] T
izyx PPP ,,=iP  

The stresses acting on the element volume dV are: 

 
When the volume dV shrinks to a point, the stresses may be represented by 

placing its components in a (3 x 3) symmetric matrix. Stress can be represented 
by the six independent components: 
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[ ]Τ= yzxzxyzyx τττσσσσ  

where σx, σy, and σz are called normal stress and τxy, τxz, and τyz are called 
shear stress. Consider the equilibrium of the element volume dV. Forces are 
developed by multiplying the stresses by the corresponding areas. Writing the 
equations of equilibrium, recognizing the dV = dx dy dz: 
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Boundary Conditions 

There are displacement boundary conditions and surface loading conditions. 

u = c  on Su

where c is a given displacement
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Consider the equilibrium if an elemental tetrahedron ABCD: 

 
where DA, DB, and DC are parallel to the x, y, and z axes, respectively, and the 
area ABC, denoted by dA, lies on the surface. If the unit vector normal to the 
surface dA is given as: 

[ ]Tzyx nnn ,,=n  

 
then the areas: 

dAnx=BDC  dAny=ADC  dAnz=ADB  

 
Consider equilibrium in each direction: 

xzxzyxyxx Tnnn =++ ττσ  

yzyzyyxxy Tnnn =++ τστ  

yzzyxyxxz Tnnn =++ σττ  
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These conditions must be satisfied on the boundary, ST, where the tractions 
are applied. Point loads must be treated as loads distributed over small but finite 
areas. 

 
Strain-Displacement Relations 

The strains in vector form that corresponds to the stress are: 

 
 
where εx, εy, and εz are normal strains and γxy, γxz, and γxz, are the engineering 
shears strains. 

We can approximate the shear strains by considering a small deformation of 
the dx-dy face of the unit volume dV: 
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Stress-Strain Relations 

For linear elastic materials, the stress-strain relations come from the general-
ized Hooke’s Law. For isotropic materials, the two material properties are 
Young’s modulus (or the modulus of elasticity) E and Poisson’s ration ν. Consid-
ering an elemental volume inside the body, Hooke’s Law gives: 
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where the shear modulus (or modulus of rigidity), G, is given by: 

)1(2 ν+
=

EG  

From Hooke’s Law, strain and stress are related by: 

( )zyxzyx E
σσσνεεε ++
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By substituting the above relationships into Hooke’s Law we get an inverse rela-
tionship: 
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where D is a symmetric (6 x 6) material matrix: 
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Special Cases 

One-Dimension. In one-dimension, the normal stress s along x and the cor-
responding normal strain e. The stress-strain relationship is simply: 

εσ E=  
 

Two-Dimension. A thin planar body subjected to in-plane loading on its edge 
surface is said to be plane stress. For example, consider a ring press fitted on a 
shaft: 

 
Here the stresses σz, τxz, and τyz are assumed to be zero. 
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For plane stress, Hooke’s Law reduces to: 
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The inverse relationship σ = Dε reduces to: 
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If the body of uniform cross section is subjected to a transverse loading along 

its length, a small thickness in the loaded area can be approximated by plane 
strain. For example: 

Z
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The inverse relationship σ = Dε reduces to: 
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Temperature Effects 

If there is a temperature change ∆T(x, y, z) with respect to the original state, 
then an additional deformation can be estimated. For isotropic material, the tem-
perature rise ∆T results in a uniform strain; this depends on the coefficient of lin-
ear expansion of the material.  

The temperature strain dose not cause any stresses when the body is free to 
deform. The temperature strain is represented as an initial strain: 

[ ]TTTT 0,0,0,,,0 ∆∆∆= αααε  

The stress-strain relationship becomes: 

)( 0εεσ −= D  

 
In plane stress, we get: 

[ ]TTT 0,,0 ∆∆= ααε  

 
In plane strain, we get: 

[ ]TTT 0,,)1(0 ∆∆+= αανε  

 
For plane stress and plane strain σ, ε, and D are defined by the corresponding 
equations given above. 
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Potential Energy and Equilibrium; The Rayleigh- Ritz Method 

In mechanics of solids, our problem is to determine the displacement u of the 
body, satisfying the equilibrium equations.  

 
Note that stresses are related to strains, which, in turn, are related to dis-

placements. This leads to requiring the solution of set of second-order partial dif-
ferential equations. Solution of these equations is generally referred to as an ex-
act solution. Such exact solutions are available for simple geometries and load-
ing conditions. For problems of complex geometries and general boundary and 
loading conditions, obtaining exact solutions is an almost impossible task. Ap-
proximate solution methods usually employ potential energy or variational 
methods, which place less stringent conditions on the functions. 

Potential Energy, Π 

The total potential energy Π of an elastic body is defined as the sum of the to-
tal strain energy, U, and the work potential, WP: 

Π = Strain Energy + Work Potential 
(U)                 (WP) 
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For linear elastic materials, the strain energy per unit volume is: 

εσ T

2
1

 

The total strain energy U is given as: 

∫=
V

T dVεσ
2
1U  

The potential work WP is given as: 

∑∫∫ −−−= i
T

i
S

T

V

T dSdV PuTufuWP  

The total potential energy for a general elastic body is: 
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T dSdVdV PuTufuεσ
2
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This is a conservative systems, where the work potential is independent of the 
path taken. In other words, if the system is displaced from a given configuration 
and brought back to its original state, the forces do zero work regardless of the 
path.  

 

 
 
Kinematically admissible displacements are those that satisfy the single-valued 
nature of displacements (compatibility) and the boundary conditions.  

Principle of Minimum Potential Energy – For conservative sys-
tems, of all the kinematically admissible displacement fields, those 
corresponding to equilibrium extermize the total potential energy. If 
the extremum condition is a minimum, the equilibrium state is stable.
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Example 

Consider a discrete connected system. The figure below shows a system of 
springs. 

 
The total potential energy of the system is: 

( ) 3311
2
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112
1 qFqFkkkk −−+++=Π δδδδ  

 
where δ1, δ 2, δ 3, and δ 4 are the extensions of the four springs. 

 

 

 
Therefore, total potential energy of the system is: 
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where q1, q2, and q3 are the displacements of nodes 1, 2, and 3, respectively. 

22 q=δ

233 qq −=δ 34 q−=δ

211 qq −=δ
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For equilibrium of this three degree-of-freedom system, we need to minimize Π 
with respect to the displacements q1, q2, and q3. 
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Therefore, the three equations are: 
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These equations can be written in matrix form as: 
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Alternately, we could write the equations of equilibrium for each node separately. 
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111 Fk =δ  

0331122 =−− δδδ kkk  

34433 Fkk =− δδ  

 
Notice the equations for the displacements were obtained in a routine manner 
using the potential energy approach, without any reference to free body dia-
grams. This feature makes the potential energy approach attractive for large and 
complex problems. 

Rayleigh-Ritz Method 

For continua, the total potential energy, Π, can be used for finding an ap-
proximate solution. The Rayleigh-Ritz method involves the construction of an as-
sumed displacement field [u, v, w]: 

ltoizyxau ii 1),,( == ∑ φ  

mtoljzyxav jj 1),,( +== ∑ φ  

lmnntomkzyxaw kk >>+== ∑ 1),,(φ             

 
The functions φi are usually taken as polynomials. Displacements u, v, and w 
must be kinematically admissible (that is u, v, and w must satisfy boundary 
conditions). Introducing stress-strain and strain-displacement relationships gives: 

),...,,( 21 naaaΠ=Π  
 
where n is the number of independent unknowns. The extremum with respect to 
ai, (i = 1 to n) gives a set of r equations: 
 

 ni
ai
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Example 

Consider the linear elastic one-dimensional rod with a body force shown below: 

 
The potential energy of this system is: 

1
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1 udx
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=Π ∫  

 
where u1  = u(x=1). Consider the polynomial function: 

2
321 xaxaau ++=  

 
The kinematically admissible function u must satisfy the boundary conditions u = 
0 at both (x = 0) and (x = 2). Therefore: 

0420 321 =+= aaa  
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Hence: 

32 2aa −=  

31
2

3 )2( auxxau −=+−=  

)1(23 −= xa
dx
du

 

 
The potential energy of this system using the function u is: 
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Applying the Rayleigh-Ritz method gives: 
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Solving for a3 gives: 

75.075.0 313 =−=−= aua  
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The stress in the bar is given by: 

)1(5.1 x
dx
duE −==σ  

 
Notice that an exact solution is obtained if a piecewise polynomial interpolation is 
used in the construction of u. 

 
Galerkin’s Method 

Galerkin’s method uses the set of governing equations in the development of 
an integral form. It is usually presented as one of the weighted residual methods. 
For our discussion, let us consider a general representation of a governing equa-
tion on a region V: 

PLu =  
 
For the one-dimensional rod considered in the pervious example, the govern-

ing equation is: 
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If we consider L as the following operator: 

()
dx
dEA

dx
d

 

 
operating on u. The exact solution needs to satisfy L at every point x. If we seek 
an approximate solution, û , it introduces an error e(x), called the residual: 

PuLxe −= ˆ)(  
 

Approximate methods revolve around setting the residual relative to a weight-
ing function Wi, to zero. 

ntoidVPLuW
v

i 10)( ==−∫  

 
The choice of the weighting function, Wi, leads to various approximation 

methods. In the Galerkin methods, the weighting functions, Wi, are chosen from 
the basis functions used for constructingû . Let û  be represented by: 
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where Gi, i = 1 to n, are basis functions (usually polynomials of x, y, z). Here we 
choose the weighting function to a linear combination of the basis functions Gi. 
Consider an arbitrary function f given by: 
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where the coefficients φi are arbitrary, except for requiring that φ satisfy homoge-
neous (zero) boundary conditions where û  is prescribed. 
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Galerkin’s Method in Elasticity 

Consider the equations of equilibrium we developed earlier. Galerkin’s method 
requires: 
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where 

[ ]Tzyx φφφφ L,,=  
 
is an arbitrary displacement consistent with the displacements, u. Consider inte-
gration by parts using the following formula: 
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where α and θ are functions of (x, y, z). For multi-dimensional problems the 
above equation is referred to as Green-Gauss theorem or the divergence theo-
rem. 

Galerkin’s Method – Chose basis functions Gi. Determine the coefficients 
Qi such that 

where φi are arbitrary except for requiring that φ satisfy homogeneous 
boundary conditions. The solution of the resulting equations for Qi then 
yields the approximate solutionû . 
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xzxzyxyxx Tnnn =++ ττσ

( ) xzxzyxyxx PdSnnn =++ ττσ

Using the Green-Gauss theorem on the equations of equilibrium yields: 
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where ε(φ) is the strain field corresponding to the arbitrary displacement field φ. 
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On the boundary we have: 
 
 
 
 
 
 
At a point loads: 
 
 
 
 
 
 
These are the natural boundary conditions in the problem. Therefore the Galerkin 
“weak form” or “variational form” for three-dimensional stress analysis is: 

yzyzyyxxy Tnnn =++ τστ

yzzyxyxxz Tnnn =++ σττ

( ) yzyzyyxxy PdSnnn =++ τστ

( ) yzzyxyxxz PdSnnn =++ σττ
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0)( =−−− ∑∫∫∫ PTf T
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T dSdVdV φφφφεσ  

where φ is an arbitrary displacement consistent with the boundary conditions. For 
problems of linear elasticity, the above equation is precisely the principle of vir-
tual work. The function φ is the admissible virtual displacement. The principle of 
virtual work may be stated as follows: 
 

 

 
Example 

Let consider the pervious problem and solve it by Galerkin’s approach. The 
equilibrium equation is: 
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Multiplying the differential equation above by φ and integrating by parts gives: 
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where φ is zero at (x = 0) and (x = 2) and EA(du/dx) is the tension in the rod, 
which make a jump of magnitude of 2 at (x = 1). Therefore: 

Principle of Virtual Work – A body is in equilibrium if the internal work 
equals the external virtual work for every kinematically admissible displace-
ment field.  
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02 1
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If we use the same polynomial function for u and φ and If u1 and φ1 are the values 
at (x = 1), we get: 
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1
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Substituting these and E = A = 1 in the above integral: 
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This is to be satisfied for every φ1. We get: 

75.01 =u  
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The stress in the bar is given by: 

)1(5.1 x
dx
duE −==σ  

 

 

 
Problems: 

1. Obtain the D matrix given below using the generalized Hook’s law relation-
ships. 
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2. Determine the displacement of nodes of the spring system shown below: 

3. Use the Rayleigh-Ritz method to find the displacement of the midpoint of 
the rod shown below (assume ρg = 1): 

 

 

4. Use Galerkin’s method to find the displacement of the midpoint of the rod in 
Problem 3. 
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Role of Computers in Finite Element Methods 

Until the early 1950s, matrix methods and the associated finite element 
method were not readily adaptable for solving complicated problems because of 
the large number of algebraic equations that resulted. Hence, even though the 
finite element method was being used to describe complicated structures, the re-
sulting large number of equations associated with the finite element method of 
structural analysis made the method extremely difficult and impractical to use.  

With the advent of the computer, the solution of thousands of equations in a 
matter of minutes became possible. The development of the computer resulted in 
computational program development. Numerous special-purpose and general-
purpose programs have been written to handle various complicated structural 
(and non-structural) problems. To use the computer, the analyst, having defined 
the finite element model, inputs the information into the computer. This formation 
may include the position of the element nodal coordinates, the manner in which 
elements are connected together, the material properties of the elements, the 
applied loads, boundary conditions, or constraints, and the kind of analysis to be 
performed. The computer then uses this information to generate and solve the 
equations necessary to carry out the analysis. 

 
General Steps of the Finite Element Method 

The following section presents the general steps for applying the finite ele-
ment method to obtain solutions of structural engineering problem. Typically, for 
the structural stress-analysis problem, the engineer seeks to determine dis-
placements and stresses throughout the structure, which is in equilibrium and is 
subjected to applied loads. For many structures, it is difficult to determine the dis-
tribution of deformation using conventional methods, and thus the finite element 
method is necessarily used. 

There are two general approaches associated with the finite element method. 
One approach, called the force, or flexibility method, uses internal forces as 
the unknowns of the problem. To obtain the governing equations, first the equilib-
rium equations are used. Then necessary additional equations are found by in-
troducing compatibility equations. The result is a set of algebraic equations for 
determining the redundant or unknown forces. 
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The second approach, called the displacement, or stiffness method, as-
sumes the displacements of the nodes as the unknowns of the problem. The 
governing equations are expressed in terms of nodal displacements using the 
equations of equilibrium and an applicable law relating forces to displacements.     

These two approaches result in different unknowns (forces or displacements) 
in the analysis and different matrices associated with their formulations (flexibil-
ities or stiffnesses). It has been shown that, for computational purposes, the dis-
placement (or stiffness) method is more desirable because its formulation is sim-
pler for most structural analysis problems. Consequently, only the displacement 
method will be used throughout this text.     

The finite element method involves modeling the structure using small inter-
connected elements called finite elements. A displacement function is associ-
ated with each finite element. Every interconnected element is linked, directly or 
indirectly, to every other element through common (or shared) interfaces, includ-
ing nodes and/or boundary lines and/or surfaces. The total set of equations de-
scribing the behavior of each node results in a series of algebraic equations best 
expressed in matrix notation.     

 
Step 1 - Discretize and Select Element Types  

Step 1 involves dividing the body into an equivalent system of finite elements 
with associated nodes and choosing the most appropriate element type. The total 
number of elements used and their variation in size and type within a given body 
are primarily matters of engineering judgment. The elements must be made small 
enough to give usable results and yet large enough to reduce computational ef-
fort. Small elements (and possibly higher-order elements) are generally desirable 
where the results are changing rapidly, such as where changes in geometry oc-
cur, whereas large elements can be used where results are relatively constant.  

The primary line elements, consist of bar (or truss) and beam elements. 
They have a cross-sectional area but are usually represented by line segments. 
In general, the cross-sectional area within the element can vary, but it will be 
considered to be constant throughout this text.  
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These elements are often used to model trusses and frame structures. The 

simplest line element (called a linear element) has two nodes, one at each end, 
although higher-order elements having three nodes or more (called quadratic, 
cubic, etc. elements) also exist. The line elements are the simplest of elements 
to consider and will be used to illustrate many of the basic concepts of the finite 
element method.     

 
The basic two-dimensional (or plane) elements are loaded by forces in their 

own plane (plane stress or plane strain conditions). They are triangular or quadri-
lateral elements.  
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The simplest two-dimensional elements have corner nodes only (linear ele-

ments) with straight sides or boundaries although there are also higher-order 
elements, typically with mid-side nodes (called quadratic elements) and curved 
sides. The elements can have variable thicknesses throughout or be constant. 
They are often used to model a wide range of engineering problems.     

The most common three-dimensional elements are tetrahedral and hexahe-
dral (or brick) elements; they are used when it becomes necessary to perform a 
three-dimensional stress analysis. The basic three dimensional elements have 
corner nodes only and straight sides, whereas higher-order elements with mid-
edge nodes (and possible mid-face nodes) have curved surfaces for their sides.     
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The axisymmetric element is developed by rotating a triangle or quadrilateral 
about a fixed axis located in the plane of the element through 360°. This element 
can be used when the geometry and loading of the problem are axisymmetric 

 

 
Step 2 - Select a Displacement Function 

Step 2 involves choosing a displacement function within each element. The 
function is defined within the element using the nodal values of the element. Lin-
ear, quadratic, and cubic polynomials are frequently used functions because they 
are simple to work with in finite element formulation. The functions are expressed 
in terms of the nodal unknowns (in the two-dimensional problem, in terms of an x 
and a y component). Hence, the finite element method is one in which a continu-
ous quantity, such as the displacement throughout the body, is approximated by 
a discrete model composed of a set of piecewise-continuous functions defined 
within each finite domain or finite element. 
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Step 3 - Define the Strain/Displacement and Stress/Strain Relationships 

Strain/displacement and stress-strain relationships are necessary for deriving 
the equations for each finite element. For one-dimensional small strain deforma-
tion, say, in the x direction, we have strain εx, related to displacement u by: 

dx
du

x =ε  

In addition, the stresses must be related to the strains through the stress-
strain law (generally called the constitutive law). The ability to define the mate-
rial behavior accurately is most important in obtaining acceptable results. The 
simplest of stress-strain laws, Hooke’s law, often used in stress analysis, is given 
by: 

xx Eεσ =  

 
Step 4 - Derive the Element Stiffness Matrix and Equations 

Initially, the development of element stiffness matrices and element equations 
was based on the concept of stiffness influence coefficients, which presupposes 
a background in structural analysis. We now present alternative methods used in 
this text that do not require this special background. 

Direct Equilibrium Method - According to this method, the stiffness matrix 
and element equations relating nodal forces to nodal displacements are obtained 
using force equilibrium conditions for a basic element, along with force-
deformation relationships. This method is most easily adaptable to line or one-
dimensional elements (spring, bar, and beam elements). 

Work or Energy Methods - To develop the stiffness matrix and equations for 
two- and three-dimensional elements, it is much easier to apply a work or energy 
method. The principle of virtual work (using virtual displacements), the princi-
ple of minimum potential energy, and Castigliano’s theorem are methods fre-
quently used for the purpose of derivation of element equations. We will present 
the principle of minimum potential energy (probably the most well known of the 
three energy methods mentioned here).  
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Methods of Weighted Residuals - The methods of weighted residuals are 
useful for developing the element equations (particularly popular is Galerkin’s 
method). These methods yield the same results as the energy methods, wher-
ever the energy methods are applicable. They are particularly useful when a 
functional such as potential energy is not readily available. The weighted resid-
ual methods allow the finite element method to be applied directly to any differen-
tial equation. 

 
Step 5 - Assemble the Element Equations and Introduce Boundary Condi-

tions 

The individual element equations generated in Step 4 can now be added to-
gether using a method of superposition (called the direct stiffness method) 
whose basis is nodal force equilibrium (to obtain the global equations for the 
whole structure). Implicit in the direct stiffness method is the concept of continu-
ity, or compatibility, which requires that the structure remain together and that no 
tears occur anywhere in the structure. The final assembled or global equation 
written in matrix form is: 

{ } [ ]{ }dKF =  
 
where {F} is the vector of global nodal forces, [K] is the structure global or total 
stiffness matrix, and {d} is now the vector of known and unknown structure nodal 
degrees of freedom or generalized displacements. 
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Step 6 - Solve for the Unknown Degrees of Freedom  

(or Generalized Displacements)    

Once the element equations are assembled and modified to account for the 
boundary conditions, a set of simultaneous algebraic equations that can be writ-
ten in expanded matrix form as: 
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where n is the structure total number of unknown nodal degrees of freedom. 
These equations can be solved for the d’s by using an elimination method (such 
as Gauss’s method) or an iterative method (such as Gauss Seidel’s method). 

 
Step 7 - Solve for the Element Strains and Stresses  

For the structural stress-analysis problem, important secondary quantities of 
strain and stress (or moment and shear force) can be obtained in terms of the 
displacements determined in Step 6.  

 
Step 8 - Interpret the Results  

The final goal is to interpret and analyze the results for use in the de-
sign/analysis process. Determination of locations in the structure where large de-
formations and large stresses occur is generally important in making de-
sign/analysis decisions. Post-processor computer programs help the user to in-
terpret the results by displaying them in graphical. 
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Applications of the Finite Element Method 

The following applications will illustrate the variety, size, and complexity of 
problems that can be solved using the finite element method and the typical dis-
cretization process and kinds of elements used. 

The first example is of a control tower for a railroad. The tower is a three-
dimensional frame comprising a series of beam-type elements. The 48 elements 
are labeled by the circled numbers, whereas the 28 nodes are indicated by the 
encircled numbers. Each node has three rotation and three displacement com-
ponents associated with it. The rotations and displacements are called the de-
grees of freedom.  

The next example is the determination of displacements and stresses in an 
underground box culvert subjected to ground shock loading from a bomb explo-
sion. The discretized model that included a total of 369 nodes, 40 one-
dimensional bar or truss elements used to model the steel reinforcement in the 
box culvert, and 333 plane strain two-dimensional triangular and rectangular 
elements used to model the surrounding soil and concrete box culvert. With an 
assumption of symmetry, only half of the box culvert must be analyzed. This 
problem requires the solution of nearly 700 unknown nodal displacements. 

Another two-dimensional problem is that of a hydraulic cylinder rod end. It was 
modeled by 120 nodes and 297 plane strain triangular elements. Symmetry was 
also applied to the whole rod end so that only half of the rod end had to be ana-
lyzed, as shown. The purpose of this analysis was to locate areas of high stress 
concentration in the rod end. 

The next example shows a chimney stack section that is four form heights 
high (or a total of 32 ft high). The engineer used 584 beams to model the vertical 
and horizontal stiffeners making up the formwork, whereas 252 flat-plate ele-
ments were used to model the inner wooden form and the concrete shell. 

The next example shows the finite element discretized model of a proposed 
steel die used in a plastic film-making process. Two hundred forty axisymmetric 
elements were used to model the three-dimensional die. 
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The next example illustrates the use of a three-dimensional solid element to 
model a swing casting for a backhoe frame. The three-dimensional hexahedral 
elements are necessary to model the irregularly shaped three-dimensional cast-
ing. Two-dimensional models certainly would not yield accurate engineering solu-
tions to this problem.  
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Advantages of the Finite Element Method 

The finite element method has been applied to numerous problems, both 
structural and non-structural. This method has a number of advantages that have 
made it very popular.  
 

1. Model irregularly shaped bodies quite easily     
2. Handle general load conditions without difficulty     
3. Model bodies composed of several different materials because the ele-

ment equations are evaluated individually     
4. Handle unlimited numbers and kinds of boundary conditions 
5. Vary the size of the elements to make it possible to use small elements 

where necessary     
6. Alter the finite element model relatively easily and cheaply     
7. Include dynamic effects     
8. Handle nonlinear behavior existing with large deformations and nonlin-

ear materials 
The finite element method of structural analysis enables the designer to detect 

stress, vibration, and thermal problems during the design process and to evalu-
ate design changes before the construction of a possible prototype.  


