
1. Introduction to Control System Toolbox

Control System Toolbox is a package for Matlab consisting of tools specifically
developed for control applications. The package offers data structures to describe
common system representations such as state space models and transfer func
tions, as well as tools for analysis and design of control systems. There are also
tools for simulation of systems.
In this excercise you will get to know the basic commands of Control System

Toolbox. When you have completed this excercise, you should be able to un
derstand and use Control Systems Toolbox to create and analyze linear systems.
Extensive use of the Matlab help command is recomended. It is also recomended
that you create a script file (e.g. myscript.m) in which you write your commands.
By running a script file instead of typing the commands directly at the Matlab
prompt, it is easier to correct mistakes, and also, your work will be saved for
later use.
The system you will use is

ẋ = Ax + Bu =

[

0 1

−1 −1

]

x +

[

0

1

]

u

y = Cx =
[

1 0
]

.

To enter a matrix in Matlab, for example matrix A, do

A = [0 1; -1 -1]

Creation and conversion of systems

Control System Toolbox supports several system representations of linear time
invariant systems. In this excercise we will use two of the most common repre
sentations; state space models and transfer functions.
Define the system matrices A, B, C and D given above. (What is the value

of D in the model?) Create a state space description of the system using ss, and
name it sys_ss. Find out how to use ss by using the help function (help ss). At
this stage, you should have obtained a state space description of the system.
Let us now create an equivalent transfer function model of the system above.

This could, as you know, be done by using the formula G(s) = C(sI−A)−1B+D.
However, Matlab may also be used for the task. Use the command tf to convert
the state space model to a tranfer function and name it sys_tf. Notice that tf
may be used for creation of transfer functions as well as conversion. What is the
syntax in the two cases respectively?

Stability analysis

Stability of a linear system is determined by the location of its poles in the
complex plane. (What is the condition for stability?) Use the commands ssdata
and tfdata to extract the necessary data from the models, and eig and roots

to determine stability of the system. Verify that the roots of the characteristic
polynomial of the transfer function are the same as the eigenvalues of the system
matrix. What are the eigenvalues / poles? Is the system stable? You could also
use the command pole, or for a graphical view, pzmap.

1



Time domain analysis

Use the command step to plot the step response of the system. Relate the cha
racteristics of the step response to the location of the poles. If there is time, use
initial and lsim to study the system response.

Some useful Matlab commands

plot Linear plot.

subplot Breaks the Figure window into small axes.

axis Control axis and scaling appearance.

hold Hold current graph.

grid Grid lines.

title Graph title.

xlabel, ylabel Axes labels.

tf Create a transfer function model.

tfdata Extract numerator and denominator.

ss Create a statespace model.

ssdata Extract statespace matrices.

zpk Create a zero/pole/gain/model.

step Step response.

initial Response of statespace model with given initial state.

pole System poles.

zero System zeros.

roots Find polynomial roots.

pzmap Polezero map.

eig Compute eigenvalues and eigenvectors.

bode Draw a bode frequency response.

lsim Simulate time response of LTI models to arbitrary inputs.

simulink Open the simulink browser.

sim Use a Simulink model from a Matlab script

simset Set options for the sim command

ictools Interactive tools for control

pplane6 Phase plane analysis, download from our webside

linmod Obtain the statespace linear model of the system of

ordinary differential equations described in a simulink model,

note that the model must contain a simulink block out from

sinks and a simulink block in from sources

2



2. Introduction to Simulink0

Simulink is a simulation program based upon Matlab. There are several ways
to define a model. One can work graphically and connect blockdiagrams with
predefined blocks. Alternatively one can give the mathematical description in
forms of differential equations in an mfile (the format for programs written
in the Matlab programming language). Matlab/Simulink supports both these
representations as well as combinations. Furthermore one can use descriptions
that include a hierarchy of connected subsystems.
To understand how models are described and simulated using block diagrams,

it is best to run small examples on a computer. The rest of Section 2 shows some
examples. If you are familiar with Simulink you can go directly to Section 3.

How to Start Simulink

Start Matlab6. Then give the command simulink in Matlab. This gives a window
with blocks as in Figure 1.

Figur 1 Available Simulink block diagram libraries

A Simple System

Click on File in the Simulinkwindow and choose New->Model. Click on the block
Continous and move a Transfer Fcn to the new window called “Untitled”. Do
the same with Source->Step Fcn and Sinks->Scope. Draw arrows (left mouse
button) and connect the ports on the block. You should now have a block diagram
as in Figure 2.
Choose Simulation->Parameters in the window called “Untitled”. Set Stop

time to 5. Open the window Scope by double clicking on it. Put Horizontal
Range to 6. Start a simulation by Simulation->Start (or by pressing Ctrlt in
the window called “Untitled’).

0Written by Bo Bernhardsson and Erik Möllerstedt January 1999, revised by Johan Åkesson
March 2002

3



Figur 2 A simple Simulink system

How to Change a System To change the system to

1
s2 + 0.5s+ 2

,

you doubleclick on the block Transfer Fcn and change Denominator to [1 0.5 2].
Simulate the new system (Simulation->Start or Ctrlt). Change parameters in
the Simulation menu and the scales in the block Scope until you are satisfied.

How to Change an Input Signal To change the input signal, start with
removing the block Step Fcn by clicking on it and delete it by using Edit->Cut
(or pressing Ctrlx). Replace it by a Sources->Signal Gen block. Doubleclick on
Signal Gen and select signal, amplitude and frequency. Also change Simulation->
Start->Stop Time to 99999 and press Simulation->Start. This gives an “infi
nite” simulation that can be stopped by pressing Simulation->Stop (or Ctrlt).
Can the amplitude of the input signal be changed during simulation? Also try to
change the block Transfer Fcn during simulation.

How to Use Matlab Variables in Blocks Note that variables defined in the
Matlab environment can be used in Simulink. Define numerator and denomina
tor by writing the following in the Matlab window.

num=[1 1]

den=[1 2 3 4]

Change Transfer Fcn->Numerator to num and Transfer Fcn->Denominator to
den.

How to Save Results to Matlab variables To save input and output move
two copies of the block Sinks->To Workspace. Make sure that the “save format”
option is set to “Array”, se figure 2. Connect these with the input and output to
the block Transfer Fcn. Also get a Source->Clock and connect it to a Sinks->To
Workspace. Change the variable names to u,y,t respectively. The window should
look something like the figure.

4



Figur 3 Model including “To Workspace” blocks.

Figur 4 The “Save format” should be set to “Array”.

How to Use Simulation Results in Matlab Calculations Let the input
signal be a sinusoidal with frequency 0.1 rad/s and amplitude 1. Do a simulation
that is long enough for the output to become stationary. Compute the maximum
value of y when the system has settled.

n=length(y)

max(y(n/2:n))

5



Using Simulink Models in Matlab Scripts

Often, it is convenient to work with Matlab scripts (mfiles), in order to save
a sequence of commands. It is possible to use Simulink models from within a
Matlab script, using the command sim. By using the command simset options
for the sim command may be specified.
Use the model from the previous example. Save the model, and name it “my

model.mdl”. Create a Matlab script named “mysim.m”, and enter the following
commands:

tfinal = 300;

options = simset(’reltol’,1e-5,’refine’,10,’solver’,’ode45’);

sim(’mymodel’,tfinal,options);

%plot results

figure(1)

clf

subplot(211)

plot(t,u);

ylabel(’u’)

subplot(212)

plot(t,y)

ylabel(’y’)

When you run the script, you should see a plot showing the input and the output
of the transfer function. Use the help command to learn more about how to use
the simset and sim commands.

How to Save Systems Use File-Save As or File->Save.

A Flow System

Consider a simple tank as in the basic control course

ḣ =
1
A

(u − q)

q = a
√

2nh.

This can be implemented in Simulink as in Figure 3. The function f (u) has
the value a*sqrt(2*g)*sqrt(u[1]). The block Sum has been given two inputs
with different signs by assigning the string “-+|” to Sum->List of Signs. The
Input and Output blocks can be found under Sources and Sinks respectively.
These blocks tell Simulink what should be considered inputs and outputs to this
(sub)system. The block titles can be changed by clicking on them. Mark the
entire system by holding the left mouse bottom pressed and drawing a square
around it. Then choose Edit->Create Subsystem. The result is that the system
is represented by one block. Use Edit->Copy to create the following doubletank
system. Use the command linmod to find a linearized model of the double tank
around h01 = h02 = 0.1. Use the parameters A1 = A2 = 2.7 � 10−3, a1 = a2 =
7.0� 10−6, n = 9.8. Notice also in figure the simulink block in from sources and
the simulink block out from sinks, which are necessary for the linmod commando.

>> A=2.7e-3;a=7e-6;g=9.8;

6



Figur 5 A tank system

Figur 6 Two tanks and some connections

>>x0 = [0.1000 0.1000]’;

>>u0 = a*sqrt(q*g*x0(1));

>> [aa, bb,cc,dd]=linmod(’flow’,x0,u0);

7


