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A B S T R A C T

In this paper, we propose a supervised learning approach based on an Artificial Neural Network (ANN) model
for real-time classification of subtasks in a physical human–robot interaction (pHRI) task involving contact
with a stiff environment. In this regard, we consider three subtasks for a given pHRI task: Idle, Driving, and
Contact. Based on this classification, the parameters of an admittance controller that regulates the interaction
between human and robot are adjusted adaptively in real time to make the robot more transparent to the
operator (i.e. less resistant) during the Driving phase and more stable during the Contact phase. The Idle phase
is primarily used to detect the initiation of task. Experimental results have shown that the ANN model can
learn to detect the subtasks under different admittance controller conditions with an accuracy of 98% for 12
participants. Finally, we show that the admittance adaptation based on the proposed subtask classifier leads to
20% lower human effort (i.e. higher transparency) in the Driving phase and 25% lower oscillation amplitude
(i.e. higher stability) during drilling in the Contact phase compared to an admittance controller with fixed
parameters.
. Introduction

The application of robots in the manufacturing industry has grown
onsiderably during the last three decades due to the improvements
n precision and accuracy of robots, as well as the fact that robots
ave become easier to program and deploy at factories [1,2]. However,
anual labor, which creates many ergonomic and health problems for
uman workers, has not been completely eradicated, as many repetitive
mall-batch processes still require human-level awareness and decision
aking.

In recent years, the mechanical adeptness of robots, compounded
y human intelligence, has lead to the emergence of physical human–
obot interaction (pHRI), the idea of robots and humans collaborat-
ng to perform many tasks more efficiently in such manufacturing
nvironments [3]. This has been made easier by the emergence of
achine/deep learning methods that can help robots learn to work
ith human operators [4]. Such collaboration can provide human
perators with precise but also compliant tools to perform their tasks
ith reduced health risk and better ergonomics [5,6]. In the foreseeable

uture, the human workforce is anticipated to cooperate with robotic
ystems rather than be replaced by them entirely [7]. This can already

∗ Corresponding author at: Robotics and Mechatronics Laboratory, Koc University, 34450, Istanbul, Turkey.
E-mail address: cbasdogan@ku.edu.tr (C. Basdogan).

be noticed by observing recent market reports of collaborative robots
(cobots) [8].

Thanks to the current progress in machine/deep learning, the in-
tention of the human operator in pHRI can be predicted up to some
extent. This enables the collaborative robot to comply with the human
by adapting the interaction controller, further reducing human effort
and maximizing task efficiency [9]. Selvaggio et al. [10] provide a
survey of how different methods have been used for adaptive control
in pHRI, through the concepts of shared control and shared autonomy,
in order to maximize task efficiency in pHRI.

Admittance control has become a popular method for pHRI, as
it offers simple means of reading the force input and outputting a
reference velocity in task-space which the robot can follow [11,12].
Since force sensors are readily available in collaborative robots such as
ours, admittance control is a viable option for physical interaction with
robots that are motion controlled[13].

In order to reduce human effort and increase task efficiency, adap-
tive admittance control is often utilized in pHRI in which admittance
mass and damping are adjusted in real time based on human inten-
tion. There are mainly two different approaches for detecting human
intention in pHRI: (a) rule-based, and (b) learning-based. Rule-based
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Fig. 1. Components of our hardware setup for collaborative drilling with a robot.

approaches have been frequently used to adapt an interaction controller
based on recognized human intention to take leader or follower role, or
to accelerate or decelerate a co-manipulated object [11,14–22]. In such
systems, a predefined and fixed or manually tuned set of heuristics is
implemented for detecting human intention in real time.

Albeit fast and easy to implement, rule-based approaches for detect-
ing human intention tend to have adequate performance under certain
circumstances only and cannot easily be generalized to different pHRI
tasks of similar nature. This is because rule-based approaches often
use task-specific variables such as position of robot’s end-effector [22],
or extremum values of force, velocity or their derivatives to detect
human intention [11,16–20]. The range of such variables are task and
environment-dependent. As a result, such systems need to be manually
tuned when the task or environment changes.

Alternatively, researchers have utilized machine/deep learning ap-
proaches more recently to detect human intention, so as to grant
intelligence to robots in pHRI systems. Machine learning methods
can use kinematic, kinetic, audiovisual and other sensory data, to
detect human intention and enable to adapt the interaction controller
accordingly [23–40].

In this paper, we argue that most pHRI tasks in small-batch man-
ufacturing operations can be divided into multiple subtasks, which
can be detected by machine/deep learning techniques. Oftentimes, the
human intention itself depends on which subtask is being performed
at any stage which can be recognized by machine learning as argued
in [41]. Accordingly, different subtasks require different control param-
eters. For instance, when a human operator is pushing and guiding a
robot in free space, more transparent interaction (i.e. less resistance to
human motion) is desired to reduce human effort, which often corre-
sponds to utilizing low damping values in the admittance controller.
On the other hand, when the robot, for example, is being used to drill
a hole on a workpiece, it is in contact with a stiff environment, and
therefore a more stable interaction is required. This usually corresponds
to utilizing high damping values in the admittance controller. Conse-
quently, if a pHRI system can understand which subtask the human
operator is executing at any given moment, it can adapt the control
parameters of the robot (admittance damping in the above discussion)
accordingly. This can lead to an efficient execution of the task while
the trade-off between transparency and stability is balanced well.

We consider a collaborative drilling scenario (Fig. 1) as our rep-
resentative pHRI task to test our idea. The drilling task is divided
into three subtasks (see Fig. 3): Subtask 1: Idle at the beginning before
the human grabs the handle, Subtask 2: Driving for when the robot is
guided by the human in free space toward the workpiece, and Subtask
3: Contact for when the robot is in contact with the workpiece, and
drilling process is underway. We use artificial neural networks (ANNs)
to detect the subtasks in real-time. The predicted subtask (Idle, Driving,
or Contact) at any instant is then passed to an adaptive control policy,
which simply sets the desired parameters of an admittance controller
accordingly. The transition from one subtask to another one is handled
by a linear interpolation between the corresponding values of the
parameters.
2

1.1. Related work

We review the earlier studies on pHRI in two groups based on
how human intention is detected for the adaptation of an interac-
tion controller: the ones using (a) rule-based and (b) learning-based
approaches.

1.1.1. Rule-based approaches
A number of studies have utilized heuristics based on kinematic

and/or kinetic data recorded during a pHRI task in order to regulate
the interaction between the human and the robot and maximize the task
efficiency. For instance, Oguz et al. [14] and Kucukyilmaz et al. [15]
developed methods for role exchange in human–robot interaction based
on haptic cues including interaction forces. Their method was adopted
by Mortl et al. [16] to adjust the contribution of a humanoid robot to
a collaborative table transportation task. Likewise, Medina et al. [17]
utilized human force in a rule-based mechanism to adjust the robot’s
degree of contribution to a task. Ikeura and Inooka [18] developed
a rule-based approach based on Cartesian velocity for adapting the
damping parameter of an admittance controller. Duchaine et al. [11]
utilized both velocity and derivative of interaction force to estimate the
state of human intention as acceleration or deceleration and then adjust
the admittance damping accordingly. Aydin et al. [19] improved this
idea by adding a fuzzy intention estimator for smoother transitioning
between those states, which was later further improved and utilized
by Hamad et al. to adjust the gain of an admittance controller in
a collaborative object transportation task [20]. As another example,
Campeau-Lecours et al. [21] used predefined thresholds of a so-called
‘‘Vibration Index’’, which is calculated online from measured velocity,
to tune the gains of an adaptive admittance controller to minimize the
vibrations during contact interactions with stiff environments.

In pHRI tasks which involve contact with stiff environments, such as
drilling a workpiece with the help of a robot, stable interaction during
contact is critical for the safety of the human operator. In our earlier
studies, Sirintuna et al. [22] utilized the position of the robot’s end-
effector to adapt an admittance controller in a collaborative drilling
task. Assuming the position of the workpiece is known in advance, a
rule-based adaptation method was implemented such that the value
of admittance damping is well within stable bounds when the drilling
starts.

As mentioned earlier, rule-based approaches for detecting human
intention in pHRI tasks typically utilize kinematic and/or kinetic data.
Such variables are highly task-specific, and their values depend on
the characteristics of the user and the environment even for the same
task. Hence, rule-based approaches need to be manually tuned when-
ever such changes occur. In contrary, methods utilizing machine/deep
learning often have the advantage of flexibility and partial task in-
dependence. Such methods typically do not directly depend on the
thresholds of kinematic and kinetic variables. For example, in a col-
laborative drilling task, the thresholds for interaction or human force
heavily depend on the user and the material properties of the workpiece
being drilled, thereby making rule-based approaches almost impractical
for real-life applications.

1.1.2. Learning-based approaches
As a more promising approach for improving the efficiency in pHRI,

machine/deep learning methods have gained considerable attention
recently, due to their flexibility, portability, and task independence.
Significant amount of research has been conducted on using supervised
learning methods for adaptive control in pHRI. Several studies have
utilized visual and auditory information such as images, videos, and
voice signals to detect human intention via a learning model [23–25].
For example, Liu et al. [26] trained a deep learning model utilizing
body posture, hand gesture, and voice command together to adapt
an interaction controller. The problem with such systems is that they
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require external cameras and motion capture systems for implementa-
tion. Furthermore, a large number of images needs to be captured and
processed for training the learning model.

As an alternative to audiovisual signals in detecting human inten-
tion, some researchers have chosen surface electromyography (sEMG)
signals, arguing that it directly shows the activation levels of muscles
in human limbs, thereby providing a more direct interface of predicting
what the human operator is trying to do. Delpreto and Rus [27]
used EMG signals for tuning an adaptive controller in a robot-assisted
lifting task. Grafakos et al. [28] proposed a variable admittance con-
trol scheme utilizing EMG signals as input to minimize human effort.
Wu et al. [29] developed a variable impedance controller utilizing
EMG signals to teach a robot how to perform a collaborative task via
the Learning from Demonstration (LfD) method. Sirintuna et al. [30]
trained an ANN model using EMG signals to predict the direction of
movement intended by the human, and then adapted an admittance
controller to confine the human motion to the predicted direction. The
fundamental shortcoming of using EMG signals for human intention
prediction is that they require additional equipment attached to human
limbs, reducing their practicality in pHRI tasks performed in manufac-
turing environments. EMG data also require additional preprocessing
since the ranges of EMG signals may vary across the trials of a user
and also among the different users.

Some other researchers have opted to simply use kinematic data
such as end-effector velocity or kinetic data such as interaction force,
to train supervised learning models. Such methods are more practical
since velocity can be easily obtained by differentiating the position
and force/torque sensors are typically available in collaborative robots
nowadays. Sam Ge et al. [31] developed an Artificial Neural Network
(ANN) model to recognize human intention using kinematic data,
including end-effector velocity. Li et al. [32] utilized ANNs in a similar
manner to estimate the human arm impedance and the desired tra-
jectory of the human operator. Rozo et al. [33] utilized end-effector
position and interaction force together to train a machine learning
algorithm for LfD to estimate human arm stiffness and desired move-
ment trajectories in cooperative transportation and assembly tasks.
Sharkawy et al. [35] trained an ANN model online for a collaborative
manipulation task and adjusted the admittance mass of the controller
to obtain a manipulation trajectory that is close to the minimum-jerk
trajectory. In a preliminary study, our group [41] showed that subtasks
can be recognized with machine learning and used this for adjusting
damping parameters of a linear controller for a spring compression task.

Some researchers have argued the importance of learning interac-
tion patterns from human dyads to transfer this knowledge to human–
robot collaboration. Madan et al. [42] used support vector machine
(SVM) classifier to successfully learn three interaction types from the
velocity and force data of collaborating human dyads: (1) work in har-
mony, (2) cope with conflicts, or (3) remain passive during interaction.
Al-Saadi et al. [43] showed that a set of features derived from force data
alone is sufficient for the successful classification of interactive motor
behaviors encountered in human dyads during collaborative object
manipulation. Townsend et al. [34] used velocity and acceleration
signals acquired from human dyads in co-manipulation tasks to train an
ANN model that predicts velocity values for a few time steps into the
future. They then deployed that model to adjust an adaptive impedance
controller in human–robot collaboration to perform the same task.

Thanks in large part to the unpredictable and highly nonlinear
movement behavior of the human operator under different conditions,
reinforcement learning (RL) is also a popular choice of machine learn-
ing method for adaptive control or intention recognition in pHRI.
Dimeas and Asparagathos [36] proposed to utilize minimum jerk as
a reward function for a reinforcement learning method with the ob-
jective of altering the admittance damping in an optimum manner.
This method may not work well in pHRI tasks for manufacturing since
they typically involve contact with a stiff environment and hence rapid
3

change in the closed-loop dynamics, which results in a jerky response
in the velocity and force profiles. Wu et al. [37] used RL, specifically
Q-Learning, to optimize an adaptive impedance controller for a co-
manipulation task. They aimed to achieve a desired motion trajectory
while minimizing the internal forces acting on the manipulated object
and the total energy consumption. Ghadirzadeh et al. [38] developed a
Q-learning approach so that a user collaborating with a robot can keep
a ball rolling on a beam at a desired target location with minimum
effort. They trained a Gaussian process regressor as the Q-function to es-
timate the outcome of state–action pairs instead of interacting with the
robot directly. They then selected policies in adjusting the impedance
of the controller such that the interaction force is minimized during
the task. Buchli et al. [39] used a PI2 method (Policy Improvement
with Path Integrals) for optimizing an adaptive impedance control via
gain scheduling to minimize the control effort. Du et al. [40] utilized
the fuzzy Sarsa(𝜆)-Learning method for minimizing the jerk in human
hand during a minimally invasive robotic surgery task via adaptive
admittance control in joint space, taking inputs from joint external
torques, and combining them with joint velocities and accelerations as
state variables.

1.2. Contributions

One of the shortcomings of the studies cited above is that they
consider the pHRI task as a whole and do not focus on its phases
(subtasks). However, most small-batch pHRI tasks in manufacturing
settings, such as drilling, polishing, cutting, sanding, welding and sol-
dering, fastening, etc., involve multiple phases (subtasks) which require
different control parameters. For example, during the so-called Driving
phase (subtask 2) of a collaborative drilling task, the user brings the
drill close to the workpiece by manually guiding the robot in free space.
A compliant behavior (minimal resistance to the user) is expected from
the robot at this phase. However, during the Contact phase (subtask 3),
the drill is in contact with the workpiece and a more rigid behavior and
stable operation is desired. These two phases with conflicting natures
require different control parameters to be used with the interaction
controller to render a more effective collaboration.

There are a limited number of studies in related literature, in which
the type of a task executed by humans is recognized. For instance,
‘‘enriched semantic event chains’’ have been used for detecting the type
of object manipulation actions performed by a human, as in ‘‘above’’,
‘‘around’’, ‘‘below’’, ‘‘getting close’’, ‘‘moving apart’’, etc. from visual
data [44]. Similarly, Borras et al. showed that the manipulation of
textile objects requires sequentially executed manipulation primitives
and some of such primitives can be performed better with different
grasp types [45]. However, to the best of the authors’ knowledge, no
earlier pHRI study involving contact with an environment has adapted
an interaction controller based on subtask recognition. In this study,
we propose a new approach for classification of the subtasks of a pHRI
task using ANNs to adjust the parameters of an admittance controller
accordingly for more effective collaboration between human and robot.

The contributions of the present study to the current state of the art
are as follows:

• We propose an adaptive admittance controller whose parameters
are adjusted based on the subtasks of a pHRI task. The potential
benefits of such an approach has been already tested by our
group for an abstract pHRI study, in which the environment was
represented by a mechanical spring [41]. In this study, however,
the proposed approach has been tested on a real-life scenario.
Collaborative drilling is used as a representative pHRI task that
involves contact with a stiff environment, and consists of phases
with differing interaction dynamics and control requirements.

• We argue that a learning-based approach is more effective than
a rule-based one to detect subtasks of a pHRI task. Rule-based
approaches requires fine-tuning of the rules for different sub-

tasks and environmental conditions and may not be possible to
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Fig. 2. Closed-loop control system used in our pHRI study.
implement for complex pHRI tasks. On the other hand, a learning-
based approach is shown to be more robust to the uncertainties
mentioned above given a diverse dataset for training. In our
study, ANNs are used for training a classifier that detects subtasks
in real time during the execution of a collaborative drilling task.
The control parameters of an admittance controller are altered
in real-time based on the detected subtasks for enabling more
effective collaboration.

• Our earlier studies have already shown the benefits of fractional
order admittance controller over the integer order one especially
for the contact phase of a pHRI task [22,46]. In this study, we
further show that adapting not only the damping but also the
fractional order of an admittance controller based on the subtasks
detected by the classifier leads to a more effective pHRI in terms
of contact stability.

The rest of the present paper is organized as follows:
Section 2 explains the technical approach followed in the study, in-

cluding the hardware setup, the closed-loop control system utilizing the
admittance controller, its adaptation policy, the deep learning method
used for subtask detection and how it is trained. Section 3 introduces
our pHRI experiments in full detail, including the experimental protocol
and conditions, information about the participants, and the methods
used for data collection and processing. Section 4 reports the results of
experimental data analyses. It explains the performance metrics used
for comparison and contrast. It reports the performance results of the
subtask classifier ANN model under the fixed and adaptive admittance
controllers. Section 5 offers insights into the results obtained by the
study and the details for the successful implementation of the proposed
approach. Section 6 provides conclusive remarks, as well as possible
future directions.

2. Approach

The approach followed in this study is to divide a pHRI task into
subtasks, and using a deep learning model to estimate those subtasks
in real-time for successful adaptation of the controller parameters. The
pHRI task selected for the study is collaborative drilling which demands
a trade-off between transparency and stability. The nature of trade-off
was investigated in depth in our earlier studies [46,47]. Our objective
in adaptation is to adjust the parameters of the admittance controller
such that the robot is transparent to the user and hence human effort is
minimized during Driving phase (subtask 2) while stability is improved
during Contact phase (subtask 3).

The learning model takes robot’s interaction force, the force exerted
by human operator alongside with the velocity, with which the human
4

drives the robot, as the time-series input at each instant of the task
execution and outputs the subtask that the user is currently execut-
ing. The parameters of the admittance controller are set according to
the estimated subtask and the transition between the different sub-
tasks is handled by linear interpolation between the values of control
parameters used for the previous and the current phases.

2.1. Hardware setup

The hardware setup used in this study is illustrated in Fig. 1. It is
composed of the following major components:

• Robot: a 7R, KUKA LBR iiwa 7 R800 cobot.
• Drill: Includes a DC motor operable between 0 and 48 V and a

drill bit attached to the motor.
• Force Sensors: Two ATI Mini45 force/torque sensors are em-

ployed. One is used for measuring the interaction force, placed
between the robot end-effector and the drill, and the other is used
for measuring the human force, placed between the handle and
the drill.

2.2. Closed-loop control system

The schematics of the control system utilized in our pHRI scenario
can be seen in Fig. 2. According to this figure, the human, 𝐹ℎ, and
environment, 𝐹env, both act on the end-effector, applying force to it.
The resultant force, 𝐹int , is measured by the interaction force sensor and
fed to the admittance controller. The admittance controller calculates
the reference velocity for the robot, 𝑣ref to follow while the actual
velocity achieved by the robot using its internal motion controller is
𝑣. Finally, 𝑣des represents the desired velocity at which the human
operator intends to move the end-effector of the robot.

Two types of admittance controllers are used and discussed in the
present paper, in order to demonstrate the flexibility of our subtask
classifier to different kinds of control schemes.

Integer-Order Admittance Controller (IOAC). In Fig. 2, 𝑌 (𝑠) is the
transfer function of the admittance controller. For a typical integer-
order admittance controller (IOAC), this transfer function takes the
form:

𝑌 (𝑠) =
𝑉ref (𝑠)
𝐹int (𝑠)

= 1
𝑚𝑠 + 𝑏

(1)

where 𝑉ref (𝑠) [m∕s] is the reference velocity generated by the ad-
mittance controller for the robot to follow, 𝐹int (𝑠) [N] is the input
interaction force along the direction of motion (positive 𝑋 direction
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Fig. 3. Subtasks of the pHRI task; (a) Idle: No contact with the handle yet; (b) Driving : The operator is guiding the drill attached to the robot in free space; (c) Contact : The
operator is drilling the workpiece.
in our implementation, see Fig. 1), 𝑚 [kg] is the admittance mass
parameter, 𝑏 [N s/m] is the admittance damping parameter, and 𝑠 is
the Laplace variable.

Fractional-Order Admittance Controller (FOAC). Aydin et al. [46]
proposed a fractional-order admittance controller (FOAC) for pHRI,
and showed that it offered a better trade-off between transparency
to human intended motion and stability robustness. This controller
was also used by Sirintuna et al. [22] in drilling experiments nearly
identical to that of ours, and the authors reached a similar conclusion.
For the FOAC proposed in the above references, the admittance control
transfer function is as follows:

𝑌 (𝑠) =
𝑉ref (𝑠)
𝐹int (𝑠)

= 1
𝑚𝑠𝛼 + 𝑏

(2)

where 𝛼 is the fractional order, varying between 0 ≤ 𝛼 ≤ 1. More
information can be found in [22,46] regarding the details of fractional
order interaction controllers and their dynamics.

For the closed-loop control system shown in Fig. 2, 𝐺(𝑠) =
𝑉 (𝑠)∕𝑉ref (𝑠) is the transfer function model for the internal dynamics and
controller of the robot. This model is not provided by the manufacturer
of the robot, and has to be determined experimentally. The transfer
function model of the robot and its internal controller were estimated
by system identification techniques for a particular configuration of the
robot in an earlier study by Aydin et al. [47]. The variables 𝑍env(𝑠) =
𝐹env(𝑠)∕𝑉 (𝑠) and 𝑍ℎ(𝑆) = 𝐹ℎ(𝑠)∕𝑉 (𝑠) in Fig. 2 are the mechanical
impedance of the environment and the human operator, respectively
(please refer to Aydin et al. [47] for the details). The control loop runs
at an update rate of 500 Hz.

2.3. Adaptive control policy

We divide a pHRI task that can be used for small-batch manufactur-
ing operations such as our drilling task into three well-defined subtasks,
Fig. 3:

• Subtask 1, Idle: At the beginning, the operator has not grabbed
the handle yet, and the system is stationary. This is labeled as
Idle.

• Subtask 2, Driving: The operator is guiding the drill attached to
the robot in free space.

• Subtask 3, Contact: The robot is in contact with the environment
and drilling operation is underway.

Fig. 4 shows the sample time plots of velocity, interaction force, and
human force for a single drilling trial, separated into three subtasks.
In our implementation, human movement is simply constrained by the
robot to the direction perpendicular to the workpiece to simplify the
task and conduct a controlled experimental study.

Idle corresponds to the few initial seconds at the beginning of every
trial when the robot is not moving and is not under the influence of
any forces yet. As soon as the operator grabs the handle, Driving phase
5

Fig. 4. Sample time plots of velocity, human and interaction forces for our
human–robot collaborative drilling task.

begins. During this subtask, even though the drill itself is active, the
robot will only be interacting with the operator, hence human force 𝐹ℎ
and interaction force 𝐹int profiles coincide as shown in Fig. 4. During
this subtask, we desire a transparent interaction, so as to minimize
human effort during the time the operator is moving the robot toward
the workpiece. That is to say, we desire relatively lower values for the
damping 𝑏 in the admittance controller.

As soon as the drill bit tip touches the workpiece, Contact begins,
and so does the drilling process. The workpiece starts exerting forces
in the opposite direction of the drilling. This is where velocity 𝑣
and interaction force 𝐹int are relatively low, whereas human force 𝐹ℎ
is high (see Fig. 4). During this phase, the operator pushes against
environmental forces to perform the drilling, while the robot is simply
moving the drill bit slowly into the workpiece based on the interaction
force being fed to the controller. In summary, during the Contact phase,
human force is greater than the opposing environmental force, and the
resulting interaction force (𝐹int = 𝐹ℎ−𝐹env), which is smaller than both
the human and environmental forces, is the input of the admittance
controller.

During Contact, due to the stiff environment, we desire a stable
and robust interaction to make sure safety of the operator is not
compromised while the drilling process is underway. For this reason,
we desire relatively higher values for the damping 𝑏 in the admittance
controller. Furthermore, our earlier studies [22,46] showed that by
setting the fractional order, 𝛼, of the admittance controller to a value
smaller than 1.0 (see Eq. (2)), contact stability can be improved [48].
Hence, in addition to adapting the admittance damping, 𝑏, throughout
the whole task, the fractional order 𝛼 was also altered during the
Contact phase.

In order to prevent any sudden or jerky motion at the beginning of
Driving, we propose to use an intermediate value for damping 𝑏 in Idle
phase, a value between the low value chosen for Driving and the high
value chosen for Contact.
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Fig. 5. The adaptation policy followed in our study for the parameters of the
admittance controller; (a) adaptation of damping 𝑏 in subtask transitions, (b) adaptation
of fractional order 𝛼 at Contact.

Adjustment of the controller in subtask transitions should not occur
instantaneously, as it would jeopardize the stability of the closed-loop
system. Therefore, parameters 𝑏 and/or 𝛼 change linearly from the
previous value to the new value within a predefined time window 𝑡𝑤.
We choose a time window of 200 ms for the transition (see Fig. 5).

In our experimental study, two adaptive controllers were investi-
gated and their performances were compared with that of an admit-
tance controller having fixed parameters. One of them only adjusts
damping in order to reduce human effort in the Driving phase without
compromising stability in the Contact phase, while the other one also
adapts the 𝛼 parameter at Contact in addition to damping, in order
to further improve contact stability during drilling. Further details are
given in Section 3.

2.4. Subtask processor

In this paper, we are using a deep learning model to classify subtasks
and then adapt control parameters accordingly. Such models are always
prone to misclassification in real time applications due to several unpre-
dictable and unavoidable reasons. In order to eliminate any potential
instabilities due to misclassification, we add two safety features to our
subtask classifier when it is deployed online. These safety features are
deployed in the ‘‘Subtask Processor’’ block of the closed-loop system
shown in Fig. 2. They are detailed below. In addition, Fig. 6 shows two
examples in which the subtask processor improves the classification
results.

Voting buffer. This buffer holds the classifier’s raw predictions for the
previous time steps, and outputs the most frequent prediction in this
moving buffer as the ‘‘verdict’’ on what the subtask is at the moment.
This acts as the equivalent of a low-pass filter for discrete-valued
categorical time-series data. Momentary fluctuations in ANN prediction
within a subtask can be addressed by this method. For instance, in
Fig. 6, there is a momentary misclassification to Driving when the drill
is turned on, due to a small noise in the data, long before Driving
actually starts. In addition, at the beginning of Contact, there is a mo-
mentary misclassification to Idle, likely because the subject decelerates
to a momentary full halt before commencing drilling, even though the
6

Fig. 6. Subtask processor in action; (a) The voting buffer eliminates the momentary
misclassification of the ANN, (b) The secondary buffer prevents misclassifications in
subtask transitions.

human intention is obviously not Idle. The voting buffer prevents the
damping value from fluctuating between high and low values, further
assuring stability. In our implementation, we have chosen a voting
buffer length of 30 time steps, equal to 60 ms in our system.

Secondary buffer. This buffer stores the verdicts of the voting buffer,
and makes sure that whenever the subtask changes from an old value to
a new value, it stays in that new value for a given period of time, before
it changes again. This is intuitive, as the operator, for instance, will
never change their intention immediately after transitioning from one
subtask to the other. This safety measure is primarily put in place for
the fluctuations during the subtask transitions that are longer than the
length of the voting buffer. With this secondary safety feature, once the
voting buffer decides to predict Driving for the first time for example,
the subtask receives a final verdict of Driving and stays there for at least
1 s before it can change back into Idle again or go to Contact.

The bottom plot in Fig. 6 shows a case where it takes some time
for the operator to fully grasp the handle with their hand. The moment
the operator touches the handle, Driving has officially begun. However,
because of the time that it takes for the operator to fully grab the
handle before actually moving the robot, noisy data cause the ANN
output to switch to Driving, but then return to Idle for some time,
before going back to Driving again as soon as the motion starts. Note
that this fluctuation is happening in a longer period of time than
the voting buffer length. This is where the secondary buffer comes in
handy, and prevents returning back to Idle after Driving has already
been detected by the voting buffer in the previous time step. The voting
buffer is for momentary fluctuations that can happen anywhere, while
the secondary buffer is for confusions that can occur only in subtask
transitions, and for longer periods of time.

We must also keep in mind that we cannot simply increase the
length of the voting buffer, as this would create long delays between
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actual and predicted subtask transitions. The secondary buffer induces
no delay in subtask classifier’s operation; it simply makes sure that
once the subtask transitions to a new value, it will not change for some
period of time.

The output of the secondary buffer is accepted as the final verdict of
the predicted subtask, denoted as ‘‘Processed Label’’ in Fig. 2, which is
fed to the adaptation mechanism. The adaptation mechanism then sets
the control parameters (admittance damping and the fractional order)
accordingly.

2.5. ANN model

Detecting the subtask is considered as a time-series classification
problem in our context. Due to highly nonlinear relationships that exist
between the inputs and the outputs in pHRI scenarios such as that of
ours, deep learning methods are chosen as the model family, as they
have proven to be highly effective for such purposes. One very popular
and capable model for time-series classification is the Artificial Neural
Network (ANN). ANN models are capable of learning all manner of
highly nonlinear relationships in dynamic systems [49]. We therefore
developed a fully-connected feed-forward multi-layer artificial neural
network model for subtask classification. As typical in time-series prob-
lems, our inputs are sequences of data collected from previous time
steps, and our output is the predicted subtask at the current time step.

We choose Softmax to be the activation function of our output layer,
as it is typical in classification problems, and ReLU (Rectified Linear
Unit) as the activation function of the hidden layers, as it is one of the
most popular activation functions for neural networks [49].

Since our inputs are in fact sequences of data, each time step in our
sequence is considered as a separate input. Consequently, the input size
of the ANN depends on the length of the input sequence, which itself
is another hyperparameter for us. That is to say, input size to the ANN
is the number of features multiplied by the sequence length.

We select ADAM [50] as the optimization algorithm for training
the model, validation accuracy as the main metric, and cross-entropy
as the cost function to be minimized. For preventing over-fitting, to
which deep learning models are very vulnerable, we include a dropout
layer [51] after each hidden layer, as well as applying 𝐿2 regulariza-
tion. A maximum number of 80 epochs and a minibatch size of 128
are chosen during training, along with a learning rate of 0.001, after
initialization with the Glorot-uniform method. The Keras deep learning
library is used in Python for training.

After a close inspection of drilling experiments, we realize that the
most prominent features in determining and distinguishing subtasks
from one another are velocity 𝑣, interaction force 𝐹int , and human
force 𝐹ℎ, as shown in Fig. 4. Therefore, we choose these three features
for training our ANN model. In our initial attempts, only the velocity
and interaction force were selected as the features for the model, but
they often produced sub-par results in comparison to the three features
chosen for the current implementation. Section 5 provides further detail
on this matter.

For labeling the data, Idle starts at the beginning of the task when
he velocity is zero. We label the beginning of Driving as the first time

human force, 𝐹ℎ, exceeds some threshold value. Contact starts when
the drill bit touches the workpiece and drilling begins. Human and
environment forces part ways from each other, and there is often a
distinct sudden deceleration in movement at the beginning of Contact.
The Contact is therefore labeled visually by inspecting the data. The
experiment ends when the target drill depth is reached.

During the training stage of the model, 75% of the collected data
as used as the training set, and the remaining 25% was used for
alidation. Different ANN configurations were trained, and the config-
7

ration shown on Table 1 was chosen eventually.
Table 1
Hyperparameters chosen for the ANN model.

Hyperparameter Chosen value

Number of hidden layers 5
Number of units on every hidden layer 75
Sequence length (number of time steps in input) 60
Dropout rate 0.1
L2 regularization parameter 0.001

3. Experiments

The goal of our experimental study is to demonstrate the benefits of
proposed approach in a realistic pHRI scenario. Collaborative drilling
is selected as the representative pHRI task in our study. We implement
an adaptive admittance controller to minimize human effort during the
Driving phase while improving stability in the Contact phase based on
the subtask classification. To this end, firstly, a training dataset was
required for the deep learning model. After the model was trained,
another set of testing experiments was required for validating the
efficacy of the trained model under different circumstances. Table 2
summarizes the experiments along with their details.

• Training experiments: The experiments were performed by Sir-
intuna et al. [22] using an admittance controller with no adap-
tation or manual adaptation; 7 subjects, 3 control parameter
settings, 4 trials each

• Testing experiments: New experiments were performed in this
study using an adaptive admittance controller with ANN subtask
classifier; 12 new subjects, 3 control parameter settings, 4 trials
each

3.1. Training experiments

The data acquired by Sirintuna et al. [22] was used as the training
set for our study. The experiments conducted in the aforementioned
study were for a drilling task similar to ours, performed with the same
collaborative robot. In the referenced study, three different admittance
controllers, as detailed below, were used, each tried with 7 participants
(6 male and 1 female with an average age of 24.9 years) performing
4 trials per controller. Hence, each participant performed 12 trials
(3 controllers × 4 repetitions) and there were a total of 84 trials (7
participants × 12 trials) in the training experiments. The order of
he trials was randomized while the same order was used for each
articipant.

rotocol. The participant waited for the light on the screen of an
R goggle to turn green. They then grabbed the handle, moved the
obot toward the workpiece at a natural pace, and drilled a hole on
he workpiece. The AR goggle showed the distance to the workpiece,
s well as penetration depth, to the participant. The participant was
nstructed to drill a depth of 5 mm into the workpiece.

dmittance controllers. Three admittance controllers were used in the
training experiments:

(a) Fixed IOAC with 𝑚 = 30 kg, 𝑏 = 2250 N s/m
(b) Adaptive FOAC with 𝑚 = 69 kg s𝛼−1, 𝑏 = 711 N s/m; 𝛼 started at

1.0 and decreased linearly with position, to 0.85 at contact.
(c) Adaptive IOAC where 𝑚 = 69 kg, 𝑏 = 711 N s/m were the values

at the beginning, and they were altered continuously according
to the impedance matching with the adaptive FOAC above, to
𝑚 = 30 kg, 𝑏 = 2250 N s/m at contact.
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Table 2
Overview of the training and testing experiments. Note that mass 𝑚 is expressed in kg s𝛼−1 and damping 𝑏 is expressed in N s/m.

Experiment Training Testing

Description Performed by Sirintuna et al. [22] using position-based adaptive control Adaptive control using subtask classification with
ANN

No. Subjects 7 12

Admittance
controllers

Fixed IOAC: 𝑚 = 30, 𝑏 = 2250, 𝛼 = 1.0 C1 — Fixed IOAC: 𝑚 = 50, 𝑏 = 400, 𝛼 = 1.0

Adaptive IOAC: 𝑚 = 69, 𝑏 = 711 at the beginning, continuously changes with
position toward 𝑚 = 30, 𝑏 = 2250 at contact.

C2 — Adaptive IOAC: 𝑚 = 50, 𝛼 = 1.0,
𝑏 changes in subtask transitions.

Adaptive FOAC: 𝑚 = 69, 𝑏 = 711,
𝛼 starts at 1.0 and changes continuously toward 0.85 at contact.

C3 — Adaptive FOAC: 𝑚 = 50,
𝑏 and 𝛼 change in subtask transitions.

Total No. Trials 84 144

𝑚 range 30–69 50
𝑏 range 711–2250 200–400
𝛼 range 0.85–1.0 0.85–1.0

Workpiece
Material

Plywood Cardboard

Drillbit
RPM

≈ 2000 ≈ 4500
3.2. Testing experiments

Further experimentation was required to evaluate the performance
of the trained model. Model performance in these experiments deter-
mined if the model was sufficiently robust and flexible under different
conditions. Hence, we selected different participants, admittance con-
trollers, adaptation policies, and a workpiece with different material
properties for the testing experiments from the training experiments to
investigate the performance of the subtask classifier.

We performed the testing experiments with 12 participants (10
male and 2 female with an average age of 24.67 ± 2.05 years). Three
different admittance controller conditions (C1, C2, and C3) were tested
as detailed below. Each condition was repeated 4 times. Hence, each
participant performed 12 trials (3 controllers × 4 repetitions) and there
were a total of 144 trials (12 participants × 12 trials) in the testing
experiments. The order of the trials was randomized while the same
order was used for each participant.

Protocol. The protocol followed in the testing experiments was similar
to that of the training experiments. Instead of an AR goggle as in the
training experiments, a computer monitor was used for providing visual
feedback and guidance to the participant. The participant was asked
to stand inside a marked space, and waited for the word ‘‘START’’ to
appear on the computer monitor in front of them. At this point the
participant grabbed the handle, and moved it toward the workpiece,
(Driving). The word ‘‘START’’ disappeared from the screen at this
moment. Once the robot contacted the workpiece and drilling started
(Contact), a progress bar appeared on the monitor, displaying the drill
depth in real-time. The target drill depth was chosen as 5 mm as in
the training experiments. Once the target drill depth was achieved,
the word ‘‘RETRACT’’ appeared on the monitor, at which point the
participant pulled the drill out of the workpiece. The detection of
Driving and Contact, which triggered a change in the visual information
displayed on the monitor, was based on the processed label, given by
the subtask processor, which in turn was tied to the ANN model as
shown in Fig. 2.

Admittance controllers. We conducted the testing experiments under
three different admittance controllers. For establishing a baseline for
comparison, we used an IOAC with fixed admittance damping. In
addition, we designed an adaptive IOAC utilizing the adaptation policy
explained in Section 2.3 for the admittance damping, 𝑏 as shown in
Fig. 5a. Finally, for investigating the additional benefits of adjusting the
fractional order, especially for the Contact phase, we also designed an
adaptive FOAC utilizing the adaptation policy explained in Section 2 for
the admittance damping 𝑏 as shown in Fig. 5a and the fractional order,
8

𝛼, as shown in Fig. 5b. The parameter values chosen for the controllers
Table 3
Parameters of the admittance controllers used in the testing experiments. Note that only
the admittance damping, 𝑏, was adapted in C2 while both the admittance damping, 𝑏,
and fractional order, 𝛼, were adapted in C3.

Parameter Chosen value Unit

C1 — Fixed IOAC

𝑚 50 kg
𝑏 400 N s/m
𝛼 1.00

C2 — Adaptive IOAC: 𝑏 was altered at subtask transitions

𝑚 50 kg
𝑏low 200 N s/m
𝑏nom 300 N s/m
𝑏high 400 N s/m
𝑡𝑤 200 ms
𝛼 1.00

C3 — Adaptive FOAC: 𝑏 and 𝛼 were altered at subtask transitions

𝑚, 𝑏, 𝑡𝑤 Same as C2
𝛼nom 1.00
𝛼low 0.85

are tabulated in Table 3. The details for those selections are explained
below.

In order to choose appropriate control parameters, knowledge of
stability thresholds for the closed-loop control system was required,
which were extracted from its stability map. A stability map is a graph-
ical representation of the controller parameters for which the resulting
closed-loop system becomes stable for a range of environment/human
arm impedance values (see the details in [46]). The approach followed
by Aydin et al. [47] was utilized to conduct the stability analysis and
obtain the stability map for the closed-loop system shown in Fig. 2.
A fairly conservative stability map for the Contact phase, which is
more susceptible to instability, is shown in Fig. 7 for our pHRI system.
According to this map, in the Contact phase, with an admittance mass
value of 𝑚 = 50 kg, the stability threshold for the damping value under
IOAC was somewhere between 250 and 300 N s/m. In order to account
for noise as well as unpredictable human or environmental dynamics
during drilling, a more conservative damping value of 400 [N s/m] was
selected for Contact. Obviously, this damping value was high for the
Driving phase where the robot was simply being guided by the human in
free space, and would increase human effort unnecessarily. This is why
an adaptive control has been suggested in this study in the first place.
For the Driving phase, a reasonable and conservative damping value of
200 N s/m was chosen. As mentioned earlier, in order to avoid any
jerky motion when the user grabbed the handle, a medium damping
value of 300 N s/m was selected for the Idle phase, a value that fell
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Fig. 7. Stability map for the Contact phase under IOAC (𝛼 = 1.00) and FOAC (𝛼 = 0.85).
Note that the stable regions are the colored regions. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

in between the damping values selected for the Driving and Contact
phases.

In summary, the following admittance controllers were used in the
testing experiments:

(a) C1 — Fixed IOAC: 𝑚 = 50 kg, 𝑏 = 400 N s/m, 𝛼 = 1.00
(b) C2 — Adaptive IOAC: 𝑚 = 50 kg, 𝑏 ∈ [200, 400] N s/m, 𝛼 = 1.00
(c) C3 — Adaptive FOAC: 𝑚 = 50 kg s𝛼−1, 𝑏 ∈ [200, 400] N s/m,

𝛼 ∈ [0.85, 1.00]

The values of controller parameters used in the testing experiments
are tabulated in Table 3 in detail, and can be compared against the
parameter values used in the training experiments in Table 2.

4. Results

In this section, the results of the subtask classifier and the perfor-
mances of the three admittance controllers are reported.

4.1. Subtask classifier performance

Table 4 reports the performance of the classifier. Accuracy levels,
weighted 𝐹1 scores, and normalized confusion matrices are reported in
this table. Note that all values are expressed in percentages. Sample
time plots of velocity, human and interaction forces recorded under
adaptive IOAC (C2) is shown in Fig. 9, which also displays the raw and
processed labels of the classifier. The adaptation of admittance damping
is also depicted in the same figure.

According to Table 4, the subtask classifier performs well on the
testing data despite major differences between the training and testing
experiments in terms of setup, environment (i.e. the material proper-
ties of the workpiece), participants and admittance controllers. This
result further justifies the application of a learning-based subtask clas-
sification for adaptive control over a rule-based one. As it can be
observed from this table, the classifier accuracy is around 98% under all
controllers while the largest confusion is between Driving and Contact.

The delay in subtask detection was approximately 235 ms on aver-
age, which is acceptable since it is rather short compared to the amount
of time it would take for the potential instabilities to build up at the
Contact phase under some low damping. This issue is further discussed
in Section 5.
9

Table 4
Performance of the subtask classifier under all admittance controllers. All values are
expressed in percentage.

Controller Accuracy 𝐹1 Score Confusion matrix

C1 97.87 97.86

Actual
Subtask

Predicted subtask
1 2 3

1 100 0 0
2 1.48 98.52 0
3 0 4.55 95.45

C2 97.15 97.12

Actual
Subtask

Predicted subtask
1 2 3

1 100 0 0
2 2.84 97.16 0
3 0 4.90 95.10

C3 97.81 97.78

Actual
Subtask

Predicted subtask
1 2 3

1 100 0 0
2 1.68 98.32 0
3 0 4.37 95.63

4.2. Controller performance

We compared the participants’ performances for the controllers tab-
ulated in Table 3. The following performance metrics were considered
for this comparison:

• Average human force in the Driving phase,
𝐹 ave
ℎ = 1

𝑡𝑐−𝑡𝑑
∫ 𝑡𝑐
𝑡𝑑

𝐹ℎ(𝑡) 𝑑𝑡, [N]

• Average velocity in the Driving phase,
𝑣ave =

1
𝑡𝑐−𝑡𝑑

∫ 𝑡𝑐
𝑡𝑑

𝑣(𝑡) 𝑑𝑡, [m∕s]

• Total Human Effort in the Driving phase,
𝐸tot
ℎ = ∫ 𝑡𝑐

𝑡𝑑
|𝐹ℎ(𝑡) 𝑣(𝑡)| 𝑑𝑡, [J]

• Peak oscillation amplitude of the end-effector velocity in the
Contact phase, 𝐴max

𝑓

In the expressions above, 𝑡𝑑 and 𝑡𝑐 are the starting times for Driving
and Contact respectively, and 𝐴𝑓 is the single-sided amplitude spectrum
as a function of frequency 𝑓 , calculated by the Fourier transform.
Human force, velocity and especially total human effort in Driving
phase provide us with valuable information as to how transparent the
robot is to the user during free motion, and peak oscillation ampli-
tude of velocity during drilling provides useful information as to how
much the stability robustness is compromised under different controller
conditions.

The calculation of 𝐴max
𝑓 was performed using the Cartesian velocity

of the end-effector for Subtask 3: Contact. For each trial, the data corre-
sponding to the Contact phase was extracted, denoised and detrended
by a band-pass filter with a frequency range of 1.0 to 20.0 Hz (note
that the drill operating frequency is ≈75 Hz), then output of its FFT
was converted to the single-sided amplitude spectrum, from which the
peak oscillation amplitude (𝐴max

𝑓 ) was obtained.
The mean values of performance metrics were calculated for each

participant under each controller condition (C1, C2, C3). The popula-
tion mean and its 95% confidence interval are reported in Fig. 8. In
order to investigate the effect of control conditions on performance
metrics, one-way ANOVA (analysis of variance) with repeated measures
was performed, while considering the type of admittance controller as
the main factor, with 𝑝 = 0.001 for testing the null hypothesis. Fig. 8
reports the results of this analysis.

Fig. 8 reports the performance metrics for fixed IOAC (C1) com-
pared to those for the adaptive controllers (C2, C3). The results show
lower human force, lower human effort and higher velocity in the
Driving phase for the adaptive controllers compared to the fixed con-
troller. This is because the damping 𝑏 was lower in the Driving phase
under the adaptive controllers. The robot was more responsive to input,
hence more transparent. The participants could move the robot easily
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Fig. 8. Comparison of performance metrics for the testing experiments; (C1) fixed IOAC, (C2) adaptive IOAC, (C3) adaptive FOAC; note that the bars represent the mean values
of the normalized metrics for all trials of all participants, and the error lines represent the 95% confidence intervals. Horizontal lines with asterisks denote statistically significant
pairwise comparisons with 𝑝 = 0.001 as the threshold.
Fig. 9. (a) Sample time plots of velocity, human and interaction force recorded under
adaptive IOAC (C2); (b) the raw (solid blue) and processed (dot–dashed red) outputs of
the classifier for this trial. The dashed black line shows the adaptation in admittance
damping. Note that the subtasks have been separated by vertical lines in both plots.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

at higher velocities and with less effort. Higher velocities also mean
lower task completion times, leading to higher task efficiency in the
long run. These improvements with adaptive control in comparison
to fixed control prove that adaptation based on subtask classification
increases overall task efficiency in pHRI tasks that involve contact with
stiff environments.

Note that the damping value chosen for Driving, 𝑏low, was not
applicable for the whole task, because it was lower than the stability
thresholds of the Contact phase, according to Fig. 7. On the other hand,
as shown in Fig. 8, a fixed damping of 400 N s/m for the whole task
(C1) increased human effort in Driving, and hence decreased the task
efficiency. Consequently, it is shown that an adaptive interaction con-
troller with subtask classification is more efficient than an interaction
controller with fixed parameters. Moreover, Fig. 8 shows that peak
oscillation amplitudes in Contact was lower for C3 than those for C1
and C2, indicating that the system was more stable when fractional
order 𝛼 was less than 1.0. A closer look at the stability maps in
Fig. 7 confirms this observation, as stable regions for lower 𝛼 value
(0.85) are much larger than those for IOAC (𝛼 = 1.0). Furthermore,
this result provides evidence that FOAC offers a better trade-off be-
tween stability and transparency, allowing us to choose wider ranges
of admittance damping values without compromising stability. This
result is inline with the results reported by Sirintuna et al. [22] and
Aydin et al. [47,48]. It must be noted that even though it is possible
to achieve similar oscillation metrics during Contact using an IOAC
with a smaller mass/damping ratio, such a provision would require
10
Fig. 10. Time plots of velocity and human force under all admittance controllers.
The dark colored curves are the mean values of all participants, and the shaded
regions surrounding them are the 95% confidence intervals. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

a relatively higher damping value to make the ratio smaller, which
would decrease transparency during Driving, resulting in higher effort
and slower motion. One of the main advantages of FOAC over IOAC is
that it maintains stability without sacrificing transparency (see [46] for
a detailed comparison of IOAC and FOAC).
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Fig. 11. (a) Exchanged energy in all trials of all subjects; (b) The range of exchanged
energy for all trials (shaded area) and its mean (solid curve). Data is normalized across
time.

Fig. 10 demonstrates the comparative time plots of different control
schemes used in the testing experiments. For eliminating the differ-
ences in the time duration among different trials, the data was time-
normalized and interpolated. This resulted in the displayed data for
every subtask to have the same length among all trials, after which
statistical data such as means and standard deviations could fairly be
extracted. The differences in velocity and human force magnitudes
under the three admittance controllers can be observed in this figure.

5. Discussion

In this study, we showed that a pHRI task can be divided into mul-
tiple subtasks and when these subtasks are detected by deep learning
techniques in real-time, appropriate control parameters can be assigned
to each subtask to improve the task efficiency and contact stability.
The results in Fig. 8 showed that the total human effort in Driving was
20% lower under the adaptive controllers (C2 and C3) compared to the
fixed controller (C1), and when the fractional order 𝛼 was also adapted
(C3) at Contact, peak oscillation amplitude in Contact was 25% smaller
compared to the fixed admittance controller (C1).

Altering the control parameters in real time may jeopardize the
stability of a pHRI system. We monitored the energy exchange in all
trials of our subjects to see if passivity [52,53] is violated in any of
them, as shown in Fig. 11. This figure suggests that we did not run into
any case where the passivity was violated during the execution of the
experiments, indicating that the system dissipated energy rather than
generating it, thereby showing that no instability was observed during
the experiments. However, this is not sufficient to claim stability for all
possible conditions in general. One might implement stability/passivity
observers [52–56] to track energy exchange within the system or the
amplitude of oscillations and then make corrective actions accordingly
for maintaining the stability.

On the other hand, since we utilize adaptive admittance controllers
(C2 and C3) which are time-varying, we can inspect the modes of
the system to investigate the stability. Due to the time-varying nature,
these modes cannot be extracted analytically, though they can be iden-
tified from the collected experimental data using the modal analysis
techniques given in [57–60]. We performed such an analysis on the
experimental data for the two seconds before and after the contact of
11
Fig. 12. Admittance damping 𝑏 and fractional order 𝛼 during the transition from Driving
to Contact subtasks (left) and the corresponding first eight modes of our pHRI system
(right) under three different controllers; (a) fixed IOAC, (b) adaptive IOAC, (c) adaptive
FOAC. The modal analysis was performed on the experimental data for the 2 s before
and after the contact of drill bit with the workpiece, where 𝑡0 represents the time of
contact. The in-line plots depict the behavior of modes for the first 0.1 s.

drill bit with the workpiece. Fig. 12 shows the first eight modes of
the coupled system under each controller (C1, C2, C3). As it can be
observed, all modes under each controller are bounded, indicating that
the system is uniformly stable [57,61,62].

As a deep learning model, we opted to use ANNs. The inputs to
our ANN model were (1) velocity of the end-effector, (2) interaction
force, and (3) human force signals, which were measured by the
sensors easily. Our analysis showed that the classification accuracy
dropped to 65% when the human force was not included as a feature
and the confusion matrix suggested that the classifier differentiated
Contact phase from the others poorly. This is not surprising since the
separation between the interaction force and the human force starts at
the beginning of Contact phase as shown in Fig. 4.

The control parameters were adjusted by a simple linear interpo-
lation in this study, though smoother interpolation techniques such as
linear interpolation with parabolic blends or polynomial interpolation
functions could be used in the implementation to prevent potential
jerky behavior in adaptation. In our approach, the successful imple-
mentation of the proposed adaptive controller heavily depends on the
performance of the subtask classifier, which is affected by the following
factors: (1) delay in the response of ANN model: The ANN model used
in this study was deployed in a C++ Tensorflow environment, since
our cobot utilizes C++ as the coding environment for its real-time
interaction interface (called Fast Robot Interface by KUKA Inc.). The
ANN model we use in our testing experiments took 2.8 ms on average
to run on the Intel Xeon W-2123 CPU. This puts the effective update
rate of the ANN model at 355.66 Hz, which is acceptable for realistic
pHRI applications that involve contact with stiff environments such as
ours. Since the ANN model runs on a separate process thread, it does
not need to be updated at the same frequency of the closed-loop control
system, which runs at 500 Hz in our application. (2) delay caused by the
voting buffer : This voting buffer eliminated the instantaneous misclas-
sifications in subtask detection as discussed earlier. Selecting a small
size for this buffer increases the number of potential misclassifications
while selecting a large size increases the delay in subtask classification.
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(3) delay caused by the adaptation of control parameters during subtask
transitioning : The transitioning of control parameters from one subtask
to another one was handled by linear interpolation. If this transition
period is too short, then the change in control parameters is abrupt
and the adaptation response of the robot is not smooth for the human
operator, while a long period increases the delay in transition and could
cause instabilities if the transitioned subtask involves contact with a
stiff environment as it is the case in our application. We opted for a
learning-based approach rather than a rule-based one for our subtask
classification problem, mainly because it would be less sensitive to
new users and changes in experimental settings and environmental
conditions. The subtask classification problem in our drilling task could
also be solved by a rule-based approach. However, if such an approach
relied on some threshold or min/max values of force and velocity
signals to determine the subtasks, then those rules would need to be ad-
justed for new users and environmental conditions. On the other hand,
defining a general set of ‘‘rules’’ that do not rely on some threshold
or min/max values of acquired sensor signals is not easy as the task
gets more complicated. As shown in Tables 2 and 4, our learning-based
approach worked well even when there were differences between the
training and testing data sets in terms of (a) users, (b) experimental
settings such as the drill type and the distance to workpiece, and (c)
environmental conditions such as the material properties of workpiece.

One of our objectives in this study was to develop a robust ANN
model for subtask classification that performs well under different
conditions. Hence, we investigated if the ANN model could successfully
classify the subtasks when the data for training and the testing sets
came from different experiments performed with different participants
under different controller and environmental conditions (inspect Ta-
ble 2). For example, the material of the workpiece used in our testing
experiments was a cardboard with a thickness of 1 cm, whereas the
training trials were performed with 1-cm thick plywood. Plywood is
a significantly stiffer material than cardboard, and as such, not only
requires higher damping values than cardboard for stability, but also
requires higher human force values during drilling. However, the per-
formance of the subtask classifier was unaffected by the stiffness of
the workpiece. This proves that the ANN model successfully extracts
meaningful patterns from the data, rather than memorizing only the
magnitudes of the features and their thresholds. This is an important
characteristic of learning-based approaches that helps them transcend
rule-based ones. Furthermore, the drill motor used in the testing ex-
periment was different from the one used in the training experiment in
terms of power and RPM characteristics. Again, the results showed that
the classifier was not sensitive to the characteristics of the drill motor.

6. Conclusion

In the present study, an adaptive admittance controller was pro-
posed for pHRI tasks based on time-series classification of force and
velocity data by dividing the pHRI task into sequentially performed
subtasks, and then assigning appropriate values for the control param-
eters for each subtask. Experimental results showed that an adaptive
admittance control with learning-based subtask classification achieves
a performance superior to that of admittance control with fixed pa-
rameters, with the added advantage of being flexible to accommodate
different users and control settings, and also portable to different setups
and environments. In particular, the adaptive FOAC controller (C3)
resulted in significantly lower human effort for the Driving phase and
better stability characteristics for the Contact phase.

Although the pHRI task in our study was drilling, we argue that
the proposed subtask classification approach is also applicable to other
small-batch manufacturing tasks such as cutting, sanding, welding,
soldering, fastening, etc., which can be easily divided into three sub-
tasks as Idle, Driving, and Contact. Even though we only consider three
subtasks in this study, one can also construct a larger set of subtasks for
more complex pHRI tasks as well. Once such a set is constructed, the
12
desired control parameters can be defined to meet the requirements of
those subtasks. Then, an ANN can be trained to recognize the subtasks
in real time, as we did it in the present study.

As a future work, a more sophisticated machine learning model can
be built such that it can forecast subtask transitions before they actually
happen. As a result, possible contact instabilities can be prevented
during the subtask transitioning to Contact for example. Moreover,
because of the ability to anticipate a new subtask such as Contact
a few moments before it happens, much lower damping values can
comfortably be selected for Driving phase, which will further decrease
human effort, leading to a higher efficiency in task performance.
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