
Decision Tree:
Decision trees are typically used to support decision-making 
in an uncertain environment. 
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TYPES of NODES:

1. Decision node
The branches originating from a decision node 
represent options available; 
2. Chance node
The branches originating from a chance node represent 
uncontrollable events. At each chance node, 
each branch is assigned a conditional 
probability equal to the probability of the event represented 
by the branch, conditioned upon the knowledge available 
at the node.
3. Leaf node
Leaf nodes represent the possible endpoints, 
(i.e. the results of the decisions and chance outcomes 
associated with the path from the start of the tree)



Example:

Manufacturing
Method B

∆T: 50 min

30%

Manufacturing
Method A

∆T: 60 min

∆T: 30 min70%

Criterion: Minimum Production Time
Question: Which method to choose?



Decision Tree Analysis:

The objective of finding the optimal solution—
that is, the best set of choices at the decision 
nodes— can be achieved by applying a “roll-up” 
process to the decision tree. 

Starting with the leaf nodes and progressing 
recursively toward the root, we label each node 
by the value of the situation it represents. 
Each chance node is labeled with the expected 
value of its successors, and each 
decision node is labeled with the value 
of the choice.



The rules of the “roll-up” analysis:

1. The expected value at a chance node can be 
calculated by multiplying values along the branches 
by its probability and adding the results together. 
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2. The expected value at the decision node 
is that of the best option (e.g. MIN(a,b) or MAX(a,b))



Example Problem

Manufacturing
Method B

∆T: 50 min

30%

Manufacturing
Method A

∆T: 60 min

∆T: 30 min70%

Criterion: Minimum Production Time

Rule 1: Expected Production Time = (30*0.7+60*0.3) = 39
Rule 2: MIN(39,50) = 39
Conclusion: Method A is a better choice than Method B
based on the criterion.



Extended version of the example problem:

Criterion: Minimum Production Cost

Method B
∆T: 50 min
Increase in
Cost: 20 %

30%

Method A

∆T: 60 min
Increase
İn Cost: 44 %

∆T: 30 min
Increase in 
Cost: 18 %

70%

Rule 1: Expected Production Cost = (18*0.7+44*0.3) = 26
Rule 2: MIN(26,20) = 20
Conclusion: Method B is a better choice than Method A based 
on the criterion.
Question: If time and cost are equally important, what to do?
(you will attempt to find an answer to this question in Project 03)



Why do we need pdfs/cdfs ?

In our example, we assumed that production time 
for Method B would be 50 minutes. However, in reality, 
we know that this will very unlikely to take exactly 50 minutes, 
so we might want to conduct sensitivity analyses later. 

Manufacturing
Method B

∆T: 50 min

Manufacturing
Method A

exatly 50 minutes ?? (not realistic)
Min: 34, Most Likely: 50, Max: 55 (more realistic) A triangular pdf



A triangular pdf and cdf
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Now, instead of single numbers along the branches, probability
density functions (one for production time and another for cost)
are defined for each branch. 



Project 03: RESULT Node
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Pseduo-code for Running Monte Carlo Iterations

for i = 0 to N // N: number of Monte Carlo iterations
{

total_time = total_cost = 0;
node_index = 0; // start traversing the tree from the root node

do 
r1 = generate_random_number();
node_index = decide_which_branch_to_take (r1);
r2 = generate_random_number();
time = find_the_corresponding_time_value_from_CDF(node_index,r2);
cost = find_the_corresponding_cost_value_from_CDF(node_index ,r2);
total_time = total_time + time;
total_cost = total_cost + cost; 

while (node_index ! = RESULT node)
path_no = node[node_index].number_of_paths;
node[node_index].path[path_no].total_time = total_time;
node[node_index].path[path_no].total_cost = total_cost;
node[node_index].number_of_paths++;

}



Generating Random Variables
using the “C” library

Since computers are deterministic devices, it is 
somewhat odd to think of them as capable of generating 
random numbers. Methods that generate series of 
values which appear to be random are used. Such 
methods are called pseudo-random number generators.

/* function to generate pseudo-random number between 0 and 1 */

#include <stdlib.h>
double simple_uniform()
{

return ((double) rand() / RAND_MAX);
} 

max random
integer



Setting the Seed in the “C” Library
srand(int) function allows the programmer to reset the 
seed value of the random number generator. 

srand( (unsigned)time( NULL ) );

#include <time.h>
...
...

The seed value of the random number generator is 
connected to the clock of the computer so that a different
number will be generated each time the rand() is called.



Example: One application of probabilistic simulation is
Monte Carlo integration, where random number generators 
are used to approximate complicated integrals.

Consider the problem of integrating the first quadrant of the
unit circle. We know the area under the curve is (PI/4).

X=sqrt(1-Y2)



#include <stdlib.h>
main()
{

int i;
int count=0;
double x,y;
int num_trials = 1000000;
for(i=1;i < num_trials; i++)
{

x = simple_uniform();
y = simple_uniform();
if(x*x + y*y < 1.0)

count++;
}
printf(“Area = %f\n”, count / num_trials);

}


