
Decision Tree:
Decision trees are typically used to support decision-making
in an uncertain environment.

Decision
Node

Leaf
Node

Chance
Node

Branch

TYPES of NODES:

1. Decision node
The branches originating from a decision node
represent options available;
2. Chance node
The branches originating from a chance node represent
uncontrollable events. At each chance node,
each branch is assigned a conditional
probability equal to the probability of the event represented
by the branch, conditioned upon the knowledge available
at the node.
3. Leaf node
Leaf nodes represent the possible endpoints,
(i.e. the results of the decisions and chance outcomes
associated with the path from the start of the tree)

Example:

Manufacturing
Method B

∆T: 50 min

30%

Manufacturing
Method A

∆T: 60 min

∆T: 30 min70%

Criterion: Minimum Production Time
Question: Which method to choose?

Decision Tree Analysis:

The objective of finding the optimal solution—
that is, the best set of choices at the decision
nodes— can be achieved by applying a “roll-up”
process to the decision tree.

Starting with the leaf nodes and progressing
recursively toward the root, we label each node
by the value of the situation it represents.
Each chance node is labeled with the expected
value of its successors, and each
decision node is labeled with the value
of the choice.

The rules of the “roll-up” analysis:

1. The expected value at a chance node can be
calculated by multiplying values along the branches
by its probability and adding the results together.

n

N

i
n obabilityValueValueExpected Pr

1
×=∑

=

2. The expected value at the decision node
is that of the best option (e.g. MIN(a,b) or MAX(a,b))

Example Problem

Manufacturing
Method B

∆T: 50 min

30%

Manufacturing
Method A

∆T: 60 min

∆T: 30 min70%

Criterion: Minimum Production Time

Rule 1: Expected Production Time = (30*0.7+60*0.3) = 39
Rule 2: MIN(39,50) = 39
Conclusion: Method A is a better choice than Method B
based on the criterion.

Extended version of the example problem:

Criterion: Minimum Production Cost

Method B
∆T: 50 min
Increase in
Cost: 20 %

30%

Method A

∆T: 60 min
Increase
İn Cost: 44 %

∆T: 30 min
Increase in
Cost: 18 %

70%

Rule 1: Expected Production Cost = (18*0.7+44*0.3) = 26
Rule 2: MIN(26,20) = 20
Conclusion: Method B is a better choice than Method A based
on the criterion.
Question: If time and cost are equally important, what to do?
(you will attempt to find an answer to this question in Project 03)

Why do we need pdfs/cdfs ?

In our example, we assumed that production time
for Method B would be 50 minutes. However, in reality,
we know that this will very unlikely to take exactly 50 minutes,
so we might want to conduct sensitivity analyses later.

Manufacturing
Method B

∆T: 50 min

Manufacturing
Method A

exatly 50 minutes ?? (not realistic)
Min: 34, Most Likely: 50, Max: 55 (more realistic) A triangular pdf

A triangular pdf and cdf

min maxmost likely

A1+ A2 =1.0

A1
A2

pdf

A1

1.0

min maxmost likely

cdf

0.0

actual

approximated

Now, instead of single numbers along the branches, probability
density functions (one for production time and another for cost)
are defined for each branch.

Project 03: RESULT Node

CHANCE Node
0

1 2

3 4 5 6

7 8 9 10

ROOT NODE

Paths:
0-1-3
0-1-4-7
0-1-4-8
0-2-5-9
0-2-5-10
0-2-6

Pseduo-code for Running Monte Carlo Iterations

for i = 0 to N // N: number of Monte Carlo iterations
{

total_time = total_cost = 0;
node_index = 0; // start traversing the tree from the root node

do
r1 = generate_random_number();
node_index = decide_which_branch_to_take (r1);
r2 = generate_random_number();
time = find_the_corresponding_time_value_from_CDF(node_index,r2);
cost = find_the_corresponding_cost_value_from_CDF(node_index ,r2);
total_time = total_time + time;
total_cost = total_cost + cost;

while (node_index ! = RESULT node)
path_no = node[node_index].number_of_paths;
node[node_index].path[path_no].total_time = total_time;
node[node_index].path[path_no].total_cost = total_cost;
node[node_index].number_of_paths++;

}

Generating Random Variables
using the “C” library

Since computers are deterministic devices, it is
somewhat odd to think of them as capable of generating
random numbers. Methods that generate series of
values which appear to be random are used. Such
methods are called pseudo-random number generators.

/* function to generate pseudo-random number between 0 and 1 */

#include <stdlib.h>
double simple_uniform()
{

return ((double) rand() / RAND_MAX);
}

max random
integer

Setting the Seed in the “C” Library
srand(int) function allows the programmer to reset the
seed value of the random number generator.

srand((unsigned)time(NULL));

#include <time.h>
...
...

The seed value of the random number generator is
connected to the clock of the computer so that a different
number will be generated each time the rand() is called.

Example: One application of probabilistic simulation is
Monte Carlo integration, where random number generators
are used to approximate complicated integrals.

Consider the problem of integrating the first quadrant of the
unit circle. We know the area under the curve is (PI/4).

X=sqrt(1-Y2)

#include <stdlib.h>
main()
{

int i;
int count=0;
double x,y;
int num_trials = 1000000;
for(i=1;i < num_trials; i++)
{

x = simple_uniform();
y = simple_uniform();
if(x*x + y*y < 1.0)

count++;
}
printf(“Area = %f\n”, count / num_trials);

}

