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Decision Trees: Decision trees are typically used to support decision-making in an 
uncertain environment. For example, in making engineering decisions for product 
manufacturing, the engineer usually faces multiple unknowns that make it difficult to 
choose a winning option. Although the engineer does not know what the overall outcome 
will be, he generally has some knowledge—or at least an opinion—about what the 
possible outcomes for the various phases of the operation and how likely each is to occur. 
This information can be compiled to help the option that is most likely to yield favorable 
results. Decision trees make this type of analysis relatively easy to apply.  
 
A decision tree has three types of nodes: (a) decision node (b) chance node, and (c) leaf 
node. The branches originating from a decision node represent options available; those 
originating from a chance node represent uncontrollable events. At each chance node, 
each branch is assigned a conditional probability equal to the probability of the event 
represented by the branch, conditioned upon the knowledge available at the node. Leaf 
nodes represent the possible endpoints, i.e. the results of the decisions and chance 
outcomes associated with the path from the start of the tree (also known as the root).   
 
Decision Tree Analysis: If you could somehow determine precisely what would happen 
as a result of choosing each option in a decision, making decisions would be easy. You 
could simply calculate the value of each competing option and select the one with the 
highest value. In engineering decisions, where there is a considerable amount of 
uncertainty and where the possible outcomes are quite complex, decisions are not that 
easily made. The objective of finding the optimal solution—that is, the best set of choices 
at the decision nodes—can be achieved by applying a “roll-up” process to the decision 
tree. Starting with the leaf nodes and progressing recursively toward the root, we label 
each node by the value of the situation it represents. Each chance node is labeled with the 
expected value of its successors, and each decision node is labeled with the value of the 
choice that has the largest value.  
 
Consider the following example to describe the “roll-up” concept. 
 
Suppose you are an engineer working in the production line and you are asked to 
manufacture a product as fast as possible so that the company can enter the consumer 
market earlier than the competitors. Now, let’s assume that there are two different 
manufacturing methods (see Figure 1). One (Method A) is possibly quicker (if everything 
goes smooth, the production time is 30 minutes)  but there is a chance that 30 % of the 
products manufactured using this method may come defective from the production line 
(note that the defective parts have to be manufactured again which results in a longer 
production time at the end: 60 minutes). The production time for the other manufacturing 
method (Method B) is longer (50 minutes) but the process does not create any defect on 
the parts. Which one should you choose? 
 



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Manufacturing
Method B

∆T: 50 min

30% Defect

Manufacturing
Method A

∆T: 60 min

∆T: 30 min70% No-Defect

Manufacturing
Method B

∆T: 50 min

30% Defect

Manufacturing
Method A

∆T: 60 min

∆T: 30 min70% No-Defect

Figure 1. An example case to describe the “roll-up” concept.  The decision nodes are 
represented by squares, chance nodes by circles, and leaf nodes by triangles. 
 
 
The roll-up approach discussed earlier can be used to choose the best option. In roll-up 
analysis, the expected value at a chance node can be calculated by multiplying values 
along the branches by its probability and adding the results together.  
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On the other hand, the expected value at the decision node is that of the best option (e.g. 
minimum time, maximum strength, etc.)  
 
Based on these rules, the Expected Production Time (EPT) associated with the Method A 
is 39 min (30*0.7+60*0.3) in our sample case. Since the EPT for the longer operation is 
50 minutes, we should choose the fast operation as the best option (i.e. MIN(39,50)) if 
our criteria for the success is purely based on the production time. However, it quickly 
becomes apparent that our expenses will increase if we choose the faster manufacturing 
operation since we have to inspect parts to search for defects. Perhaps, we will produce 
the parts on time and enter the market early, but the cost of this operation will be so high 
that we will not be able to make sufficient profit from the product in the long run.  
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Figure 2. An extended version of the sample case depicted in Figure 1. 
 
Let’s continue to study our problem. Let’s assume that increase in production cost is 
given for each branch (see Figure 2). Now, the Expected Increase in Cost (EIC) for fast 
manufacturing method (Method A) will be equal to 26% (18*0.7 + 44*0.3). Since the 
EIC for the slow, but less defective manufacturing method (Method B) is equal to 20% 
(see Figure 2), we should choose (i.e. MIN (26,20)) the slow manufacturing method if 
our main concern is the cost of production. As can be seen in these examples, there are 
always tradeoffs in decision making. Since the criterion for the success is “manufacturing 
the product as fast as possible with minimum cost”, we need to consider both variables 
(i.e. production time and cost) to make a decision at the highest level of the tree.  
 
This analysis assumes that everything important has been included in the values assigned 
to the leaf nodes. However, it is usually not easy to estimate the exact values of variables 
along the branches. For example, in our case, we assumed that production time for 
Method B would be 50 minutes. However, in reality, we know that this will very unlikely 
to take exactly 50 minutes, so we might want to conduct sensitivity analyses later, in 
which we vary the value over the entire range of likely values.  In fact, by using a Monte 
Carlo approach, as discussed in the next section, we can do the sensitivity analyses when 
we process a decision tree. Production time, for example, might be described by a 40 
minute minimum value, a 50 minute most likely value, and a 70 minute maximum value. 
 
Monte Carlo Simulations: 
Decision trees, which are discussed above, provide an excellent tool for analyzing the 
consequences of alternative decisions for selecting contingent actions to take in response 
to events. The so-called Monte Carlo approach provides a convenient means to consider 
all of the uncertainties in a decision tree. Instead of applying a single number to each 
input variable (e.g., time, attrition, etc.) and receiving a single number back from the 
calculation engine, a probability distribution is applied to each input variable. This 
probability distribution represents the uncertainty in the input variable. A random value is 
then drawn from each probability distribution and the output value measures are 
calculated. By applying this procedure repeatedly (perhaps hundreds or thousands of 
times) and plotting a histogram of the output value measures, a risk profile for the project 
is built.  
 



In traditional analyses of decision trees, the only probabilities considered are those that 
determine which branch is taken at chance nodes. One consequence is that only discrete 
possibilities can be considered (For example, the production time in our example above 
could only take one of the three values 35 minutes, 50 minutes, or 60 minutes).  In the 
Monte Carlo approach, we describe the production time by a probability distribution and 
then randomly select a value from that distribution.  This operation is repeated many 
times, drawing new random numbers for each uncertain parameter each time. Providing 
the appropriate statistics are collected to describe the outcomes of many trials, it then 
becomes possible to make decisions on the basis of the probabilities associated with the 
entire range of results.  That is, sensitivity analysis is built into the results. 
 
Monte Carlo iteration facilitates statistical analysis of problems that are not otherwise 
easily solvable. The decision trees associated with engineering decisions are often of this 
nature as there are many complications, like occurrence of defects that make it difficult to 
assess the effect of a change in an input variable to output without redoing the entire 
calculation from the start. Especially, when there are several uncertain values, 
determining the uncertainty of the result can be very complex. Since multiple actions 
with identical expected values can have completely different risk profiles, a single 
number that represents the best estimate for the value of an opportunity is often 
insufficient, as the uncertainty in this estimate must also be evaluated. Monte Carlo 
iteration is a convenient and accurate method of doing this.  
 
Choosing a Probability Distribution: As we discussed above, one thing the Monte 
Carlo approach allows us to do is to estimate the probability distribution of input 
variables, rather than having to rely on solely the most likely value. This allows the 
decision maker to express his uncertainty directly, rather than having to specify single 
values. In our study of Monte Carlo simulations, the user will input some of the numbers, 
then associated simulations will generate other values and their uncertainty distributions 
along the branches of the decision tree. We will use triangular probability distribution 
functions to specify min, most likely, and max values, entered directly by the user (see 
Figure 3).  
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Figure 3. A triangular pdf and the cdf. The user specifies the min, most likely, and 
maximum values. 
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