
Welcome toWelcome toWelcome toWelcome to

Programming AnimationProgramming AnimationProgramming AnimationProgramming Animation
and Interaction inand Interaction inand Interaction inand Interaction in

Open InventorOpen InventorOpen InventorOpen Inventor
Demo CourseDemo CourseDemo CourseDemo Course

Sponsored bySponsored bySponsored bySponsored by
Portable Graphics IncPortable Graphics IncPortable Graphics IncPortable Graphics Inc

AbstractAbstractAbstractAbstract

Open Inventor is a high-level cross-platform object-Open Inventor is a high-level cross-platform object-
oriented 3-D interactive graphics and animationoriented 3-D interactive graphics and animation
toolkit. This course covers necessary knowledgetoolkit. This course covers necessary knowledge
for programming animation and interaction infor programming animation and interaction in
Open Inventor, including sensors, engines,Open Inventor, including sensors, engines,
manipulators, events, Windows interfacing, andmanipulators, events, Windows interfacing, and
performance optimization. Basic concepts will beperformance optimization. Basic concepts will be
anchored with demonstration programs whichanchored with demonstration programs which
execute on one screen while attendees examineexecute on one screen while attendees examine
associated source code on another.associated source code on another.

SpeakersSpeakersSpeakersSpeakers

● Chris BuckalewChris Buckalew
–– buckalew@calpoly.edu (805) 756-1392buckalew@calpoly.edu (805) 756-1392
–– Computer Science Dept, Cal Poly State UniversityComputer Science Dept, Cal Poly State University
 San Luis Obispo, CA 93407 San Luis Obispo, CA 93407

● John ReadeyJohn Readey
–– jlr@portable.com (512) 719-8000jlr@portable.com (512) 719-8000
–– Portable Graphics Inc, 3006 Longhorn Blvd Suite 105Portable Graphics Inc, 3006 Longhorn Blvd Suite 105
 Austin, TX 78758 Austin, TX 78758

● Lew HitchnerLew Hitchner
–– hitchner@phoenix.calpoly.edu (805) 756-2824hitchner@phoenix.calpoly.edu (805) 756-2824
–– Computer Science Dept, Cal Poly State UniversityComputer Science Dept, Cal Poly State University
 San Luis Obispo, CA 93407 San Luis Obispo, CA 93407

Speaker InfoSpeaker InfoSpeaker InfoSpeaker Info
● Chris Buckalew, Associate ProfessorChris Buckalew, Associate Professor

Chris Buckalew is an Associate Professor of Computer Science at Cal Poly State University inChris Buckalew is an Associate Professor of Computer Science at Cal Poly State University in
San Luis Obispo. H received his Ph.D. in 1990 from the University of Texas. His researchSan Luis Obispo. H received his Ph.D. in 1990 from the University of Texas. His research
interests include photorealistic image synthesis and scientific visualization.interests include photorealistic image synthesis and scientific visualization.
Dr. Buckalew’s dissertation work was published in SIGGRAPH ‘89, and he ahs also publishedDr. Buckalew’s dissertation work was published in SIGGRAPH ‘89, and he ahs also published
several articles on realistic image synthesis, scientific visualization, and computer-assistedseveral articles on realistic image synthesis, scientific visualization, and computer-assisted
lecture systems. He is currently engaged in building the undergraduate Computer Graphicslecture systems. He is currently engaged in building the undergraduate Computer Graphics
program at Cal Poly, for which work he has received five consecutive annucal Outstandingprogram at Cal Poly, for which work he has received five consecutive annucal Outstanding
Professor awards, voted on by the students.Professor awards, voted on by the students.

● John Readey, Product ManagerJohn Readey, Product Manager
John Readey is the Open Inventor Product Manager at Portable Graphics Inc. He graduatedJohn Readey is the Open Inventor Product Manager at Portable Graphics Inc. He graduated
from Ohio State University in 1989 with a M.S. degree in Computer Science. He spent thefrom Ohio State University in 1989 with a M.S. degree in Computer Science. He spent the
next five years at IBM where he developed IrisGl, and OpenGL software for the RS/6000.next five years at IBM where he developed IrisGl, and OpenGL software for the RS/6000.
Since moving over to PGI in 1994, he has been engaged in Open Inventor porting issues,Since moving over to PGI in 1994, he has been engaged in Open Inventor porting issues,
Inventor extensions, and VRML.Inventor extensions, and VRML.

● Lewis E. Hitchner, LecturerLewis E. Hitchner, Lecturer
Dr. Hitchner obtained the Ph.D. degree from the University of Utah where he did research inDr. Hitchner obtained the Ph.D. degree from the University of Utah where he did research in
3D digital image processing and computer graphics. He was a faculty member in Computer3D digital image processing and computer graphics. He was a faculty member in Computer
Science at UC Santa Cruz for five years, and he is currently a lecturer in the Computer ScienceScience at UC Santa Cruz for five years, and he is currently a lecturer in the Computer Science
Department at California Polytechnic State University. His research and industrialDepartment at California Polytechnic State University. His research and industrial
employment includes four years Virtual Reality research at NASA Ames Research Center, twoemployment includes four years Virtual Reality research at NASA Ames Research Center, two
years in R&D for Xtensory Inc., and Sterling Software, Inc., and VR software developmentyears in R&D for Xtensory Inc., and Sterling Software, Inc., and VR software development
consulting for Sense8 Corp. Recently he has designed and taught technical training courses inconsulting for Sense8 Corp. Recently he has designed and taught technical training courses in
VR software for Sense8 Corp. He is also the editor and author of ‘The Virtual Software Report’VR software for Sense8 Corp. He is also the editor and author of ‘The Virtual Software Report’
published by the VR NEWS of London, UK.published by the VR NEWS of London, UK.

Table of ContentsTable of ContentsTable of ContentsTable of Contents

● Introduction (Chris Buckalew)Introduction (Chris Buckalew)
● Sensors (Chris Buckalew)Sensors (Chris Buckalew)
● Engines (Chris Buckalew)Engines (Chris Buckalew)
● Nodekits (Lew Hitchner)Nodekits (Lew Hitchner)
● Draggers and Manipulators (Lew Hitchner)Draggers and Manipulators (Lew Hitchner)
● Cool Nodes and other topics (Chris Buckalew)Cool Nodes and other topics (Chris Buckalew)
● Event Handling (John Readey)Event Handling (John Readey)
● Interfacing to the Windowing SystemInterfacing to the Windowing System
 (John Readey) (John Readey)
● Optimization (John Readey)Optimization (John Readey)
● The Future of Open Inventor (SGI)The Future of Open Inventor (SGI)

● Knowledge of C or C++Knowledge of C or C++

● Basic computer graphics knowledgeBasic computer graphics knowledge

● Some knowledge of Open Inventor: nodes, scene graphSome knowledge of Open Inventor: nodes, scene graph
organization, properties, traversal, etc.organization, properties, traversal, etc.

Participant BackgroundParticipant BackgroundParticipant BackgroundParticipant Background

Introduction

Manipulators

What is Open Inventor?What is Open Inventor?What is Open Inventor?What is Open Inventor?

● Object-oriented 3-D interactive graphics toolkitObject-oriented 3-D interactive graphics toolkit
● Library of objects and methods to createLibrary of objects and methods to create

interactive 3-D graphics applicationsinteractive 3-D graphics applications
● Standard across many vendors and platformsStandard across many vendors and platforms

Introduction

Node Kits

Open Inventor 3D Toolkit

Scene Database

OpenGL UNIX

Open Inventor
3-D
Interchange
File Format

Open Inventor Component Library

Object DatabaseObject DatabaseObject DatabaseObject Database

● Extensible variety of primitivesExtensible variety of primitives

● Objects can be picked, highlighted, andObjects can be picked, highlighted, and
manipulatedmanipulated

● Object calculations such as bounding boxes andObject calculations such as bounding boxes and
intersections may be performedintersections may be performed

● Objects may be printed, searched for, rendered,Objects may be printed, searched for, rendered,
and read to and from filesand read to and from files

Introduction

Animation and InteractionAnimation and InteractionAnimation and InteractionAnimation and Interaction

● AnimationAnimation
–– SensorsSensors
–– Field connectionsField connections
–– EnginesEngines

● InteractionInteraction
–– SensorsSensors
–– CallbacksCallbacks
–– SelectionSelection
–– DraggersDraggers
–– ManipulatorsManipulators

Introduction

Rendering CapabilitiesRendering CapabilitiesRendering CapabilitiesRendering Capabilities

● Shapes:Shapes:
–– Sphere, cone, cube, cylinderSphere, cone, cube, cylinder
–– PolyhedraPolyhedra
–– Text and 3-D textText and 3-D text
–– NURBS curves and surfacesNURBS curves and surfaces
–– Extensible to user-defined primitivesExtensible to user-defined primitives

● TextureTexture
● TransparencyTransparency
● Access to all OpenGL rendering capabilitiesAccess to all OpenGL rendering capabilities

Introduction

A Simple Scene GraphA Simple Scene GraphA Simple Scene GraphA Simple Scene Graph

The Scene
Graph and
Nodes

graph1.C

headXheadX headMheadM hSpherehSphere

headhead

SensorsSensorsSensorsSensors

● Timing sensorsTiming sensors

–– Automatic triggering of timed eventsAutomatic triggering of timed events

● Data sensorsData sensors

–– Activate callback procedures when data changesActivate callback procedures when data changes

Introduction

EnginesEnginesEnginesEngines

● Simple engine: the field connectionSimple engine: the field connection
–– as one field changes, other fields hooked to itas one field changes, other fields hooked to it
 automatically change automatically change

● Most engines involve some function betweenMost engines involve some function between
connected fieldsconnected fields
–– Animation engines: real-time clock drives engines toAnimation engines: real-time clock drives engines to

automatically update fields over timeautomatically update fields over time
–– Arithmetic engines: inputs from selected fields areArithmetic engines: inputs from selected fields are

to produce outputs that drive other fieldsto produce outputs that drive other fields

● Extremely flexibleExtremely flexible
● Encapsulates motion into metafile formatEncapsulates motion into metafile format

Introduction

Draggers and ManipulatorsDraggers and ManipulatorsDraggers and ManipulatorsDraggers and Manipulators

● Scene geometry that has built-in user interfaceScene geometry that has built-in user interface
and resulting actionsand resulting actions

● Dragger output may be connected to any field forDragger output may be connected to any field for
variety of applicationsvariety of applications

● Manipulators allow interactive editing of certainManipulators allow interactive editing of certain
nodesnodes

Introduction

NodekitsNodekitsNodekitsNodekits

● Organize nodes into subgraphs, (like functions inOrganize nodes into subgraphs, (like functions in
computer languages)computer languages)

● Nodes are laid out in an efficient mannerNodes are laid out in an efficient manner

● Resulting code is shorter and easier to understandResulting code is shorter and easier to understand

● Nodekits may be subclassed to create your ownNodekits may be subclassed to create your own
nodekit typesnodekit types

Introduction

Event HandlingEvent HandlingEvent HandlingEvent Handling

● Automatic event handlingAutomatic event handling
–– Selection node and manipulatorsSelection node and manipulators

● Callbacks triggered by specific eventsCallbacks triggered by specific events

● Bypass Inventor event handling and receiveBypass Inventor event handling and receive
events from the window system directlyevents from the window system directly

● Callback nodes can trigger events during sceneCallback nodes can trigger events during scene
graph traversalgraph traversal

Introduction

File FormatFile FormatFile FormatFile Format

● Stores scene geometry, engine motion, andStores scene geometry, engine motion, and
automatic event handlingautomatic event handling

● Frequently faster to edit IV files rather than edit,Frequently faster to edit IV files rather than edit,
recompile, and run programsrecompile, and run programs

● File format is used for cutting and pastingFile format is used for cutting and pasting
between windows or processesbetween windows or processes

● Also used to specify nodekit partsAlso used to specify nodekit parts

● Many converters are availableMany converters are available

Introduction

Component LibraryComponent LibraryComponent LibraryComponent Library

● Contains functions to communicate with theContains functions to communicate with the
windowing systemwindowing system

● Includes variety of Includes variety of viewersviewers and and editorseditors

● Utility functions to manage windowsUtility functions to manage windows

● Functions to customize the windows withFunctions to customize the windows with
toolbars, buttons, and menustoolbars, buttons, and menus

● Originally X-Windows; currently mature portsOriginally X-Windows; currently mature ports
for Windows95 and NT with more plannedfor Windows95 and NT with more planned

Introduction

SensorsSensorsSensorsSensors
presented bypresented bypresented bypresented by

Chris BuckalewChris BuckalewChris BuckalewChris Buckalew

Sensors

SensorsSensorsSensorsSensors

● Timer queue sensorsTimer queue sensors
–– Alarm sensorAlarm sensor
–– Timer sensorTimer sensor

● Delay queue sensorsDelay queue sensors
–– Field, node, and path sensorsField, node, and path sensors
–– Idle sensorIdle sensor
–– Oneshot sensorOneshot sensor

Sensors

Sensor CallbacksSensor CallbacksSensor CallbacksSensor Callbacks

● Defining a callback:Defining a callback:

 static void static void
 lightCallback(void *data, SoSensor *) { lightCallback(void *data, SoSensor *) {
 SoDirLight *light = (SoDirLight *) data; SoDirLight *light = (SoDirLight *) data;
 if (light->on.getValue() == TRUE) if (light->on.getValue() == TRUE)
 light->on = FALSE; light->on = FALSE;
 else else
 light->on = TRUE; light->on = TRUE;
 } }

Sensors

sensor1.C

Sensor Callbacks (cont)Sensor Callbacks (cont)Sensor Callbacks (cont)Sensor Callbacks (cont)

● Initializing a callback function:Initializing a callback function:

 SoDirLight *dLight = new SoDirLight; SoDirLight *dLight = new SoDirLight;
 SoTimerSensor *lightSensor = SoTimerSensor *lightSensor =
 new SoTimerSensor(lightCallback, dLight); new SoTimerSensor(lightCallback, dLight);
 lightSensor->setInterval(5.0); lightSensor->setInterval(5.0);
 lightSensor->schedule(); lightSensor->schedule();

Sensors

sensor1.C

SoAlarmSensor ExampleSoAlarmSensor ExampleSoAlarmSensor ExampleSoAlarmSensor Example

static void alarmCallback(void *data, SoSensor *) {static void alarmCallback(void *data, SoSensor *) {
 SoDirLight *light = (SoDirLight *) data; SoDirLight *light = (SoDirLight *) data;
 light->on = TRUE; } light->on = TRUE; }

main() {main() {
 SoDirLight *dLight = new SoDirLight; SoDirLight *dLight = new SoDirLight;
 SoAlarmSensor *alarm = SoAlarmSensor *alarm =
 new SoAlarmSensor(alarmCallback, dLight); new SoAlarmSensor(alarmCallback, dLight);
 alarm->setTimeFromNow(10.0); alarm->setTimeFromNow(10.0);
 alarm->schedule(); alarm->schedule();
}}

Sensors

sensor2.C

Data SensorsData SensorsData SensorsData Sensors

● Sensor is attached to a field, node, or pathSensor is attached to a field, node, or path

● Data sensors have prioritiesData sensors have priorities

● When the data changes:When the data changes:
 the sensor is scheduled according to priority the sensor is scheduled according to priority
 later, the delay queue is processed and later, the delay queue is processed and
 sensor is triggered sensor is triggered
 triggered sensor is removed from queue and triggered sensor is removed from queue and
 callback is executed callback is executed

Sensors

Field Sensor ExampleField Sensor ExampleField Sensor ExampleField Sensor Example
cameraLocCB(void *data, SoSensor *) {cameraLocCB(void *data, SoSensor *) {
 SoAlarmSensor *delay = (SoAlarmSensor *) data; SoAlarmSensor *delay = (SoAlarmSensor *) data;
 drawStyle->style = SoDrawStyle::LINES; drawStyle->style = SoDrawStyle::LINES;
 delay->unschedule(); delay->unschedule();
 delay->setTimeFromNow(3.0); delay->setTimeFromNow(3.0);
 delay->schedule(); } delay->schedule(); }

main() {main() {
 SoAlarmSensor *delay = SoAlarmSensor *delay =
 new SoAlarmSensor(restoreFillCB, NULL); new SoAlarmSensor(restoreFillCB, NULL);
 SoCamera *camera = viewer->getCamera(); SoCamera *camera = viewer->getCamera();
 SoFieldSensor *fieldSensor = SoFieldSensor *fieldSensor =
 new SoFieldSensor(cameraLocCB, delay); new SoFieldSensor(cameraLocCB, delay);
 fieldSensor->attach(&camera->position); fieldSensor->attach(&camera->position);
}}

Sensors

sensor3.C

Trigger FieldsTrigger FieldsTrigger FieldsTrigger Fields

● Use trigger methods to find which field triggeredUse trigger methods to find which field triggered
the callbackthe callback

● Within the callback function:Within the callback function:
 SoField *changed = sensor->getTriggerField(); SoField *changed = sensor->getTriggerField();

● Useful when several sensors execute the sameUseful when several sensors execute the same
callback functioncallback function

● Trigger node finds which node triggered callbackTrigger node finds which node triggered callback

Sensors

sensor4.C

One-Shot and Idle SensorsOne-Shot and Idle SensorsOne-Shot and Idle SensorsOne-Shot and Idle Sensors

● SoOneShotSensor is triggered when the delaySoOneShotSensor is triggered when the delay
queue is processedqueue is processed
–– use to delay time-consuming workuse to delay time-consuming work
–– guaranteed to execute periodicallyguaranteed to execute periodically

● SoIdleSensor is triggered when there are noSoIdleSensor is triggered when there are no
events or timers to be processedevents or timers to be processed
–– may never be triggered if CPU stays busymay never be triggered if CPU stays busy

● Delay queue is processed every 1/30th second byDelay queue is processed every 1/30th second by
defaultdefault
–– interval may be changed withinterval may be changed with
 SoDB::setDelaySensorTimeout() SoDB::setDelaySensorTimeout()

Sensors

EnginesEnginesEnginesEngines
presented bypresented bypresented bypresented by

Chris BuckalewChris BuckalewChris BuckalewChris Buckalew

Engines

EnginesEnginesEnginesEngines

● “Function boxes” : take inputs and produce“Function boxes” : take inputs and produce
 outputs outputs

● Inputs and outputs can include time or geometryInputs and outputs can include time or geometry

● Encapsulate time and geometry changes in theEncapsulate time and geometry changes in the
scene graphscene graph

● Engines may be cascadedEngines may be cascaded

Engines

Under the HoodUnder the HoodUnder the HoodUnder the Hood

Engines

input1
input2
input3
.....

output1
output2
.....

Some Engine ClassesSome Engine ClassesSome Engine ClassesSome Engine Classes

● Time inputs:Time inputs:
–– SoElapsedTime, SoOneShot, SoTimeCounterSoElapsedTime, SoOneShot, SoTimeCounter

● Triggered inputs:Triggered inputs:
–– SoCounter, SoOnOff, SoTriggerAny, SoGateSoCounter, SoOnOff, SoTriggerAny, SoGate

● SoCompose and SoDecomposeSoCompose and SoDecompose

● SoInterpolateSoInterpolate

● SoCalculatorSoCalculator

Engines

Field ConnectionsField ConnectionsField ConnectionsField Connections

● connectFrom(SoField *field);connectFrom(SoField *field);
● connectFrom(SoEngineOutput *engineOut);connectFrom(SoEngineOutput *engineOut);
● Example:Example:
 SoSphere *ball = new SoSphere; SoSphere *ball = new SoSphere;
 SoCube *box = new SoCube; SoCube *box = new SoCube;
 box->width.connectFrom(&ball->radius); box->width.connectFrom(&ball->radius);
 root->addChild(ball); root->addChild(ball);
 root->addChild(box); root->addChild(box);

 SoElapsedTime *counter = new SoElapsedTime; SoElapsedTime *counter = new SoElapsedTime;
 ball->radius.connectFrom(&counter->timeOut); ball->radius.connectFrom(&counter->timeOut);

Engines

engine1.C

Making Field ConnectionsMaking Field ConnectionsMaking Field ConnectionsMaking Field Connections

● Connection cyclesConnection cycles

● Multiple connectionsMultiple connections

● Field type conversionsField type conversions

● disconnect()disconnect()

● isConnected()isConnected()

Engines

Time Input EnginesTime Input EnginesTime Input EnginesTime Input Engines

● SoElapsedTime - counts from start in floatSoElapsedTime - counts from start in float
secondsseconds
–– inputs: timeIn, spped, on, pause, resetinputs: timeIn, spped, on, pause, reset
–– output: timeOutoutput: timeOut

● SoOneShot - runs for a set time, then stopsSoOneShot - runs for a set time, then stops
–– inputs: timeIn, duration, trigger, flags, disableinputs: timeIn, duration, trigger, flags, disable
–– outputs: timeOut, isActive, rampoutputs: timeOut, isActive, ramp

● SoTimeCounter - cycles through a count inSoTimeCounter - cycles through a count in
integer secondsinteger seconds
–– inputs: timeIn, min, max, step, on, frequency, duty,inputs: timeIn, min, max, step, on, frequency, duty,

reset, syncInreset, syncIn
–– outputs: output, syncOutoutputs: output, syncOut

Engines

Elapsed-Time EngineElapsed-Time EngineElapsed-Time EngineElapsed-Time Engine

Engines

engine2.Cairplaneairplane

rootroot

aboutYaboutY

countercounter

Elapsed-Time ExampleElapsed-Time ExampleElapsed-Time ExampleElapsed-Time Example

 SoRotationXYZ *aboutY = new SoRotationXYZ; SoRotationXYZ *aboutY = new SoRotationXYZ;
 aboutY->axis = SoRotationXYZ::Y; aboutY->axis = SoRotationXYZ::Y;

 root->addChild(airplane); root->addChild(airplane);

 SoElapsedTime *counter = new SoElapsedTime; SoElapsedTime *counter = new SoElapsedTime;
 aboutY->angle.connectFrom(&counter>timeOut); aboutY->angle.connectFrom(&counter>timeOut);

Engines

engine2.C

Time-Counter and Compose EnginesTime-Counter and Compose EnginesTime-Counter and Compose EnginesTime-Counter and Compose Engines

rootroot

jumpXjumpX

heightheight

widthwidth

jumpjump

Engines

engine3.C

Time-Counter and Compose Engines ExampleTime-Counter and Compose Engines ExampleTime-Counter and Compose Engines ExampleTime-Counter and Compose Engines Example

SoTranslation *jumpX = new SoTranslation;SoTranslation *jumpX = new SoTranslation;
SoTimeCounter *height = new SoTimeCounter;SoTimeCounter *height = new SoTimeCounter;
SoTimeCounter *width = new SoTimeCounter;SoTimeCounter *width = new SoTimeCounter;
SoComposeVec3f *jump = new SoComposeVec3f;SoComposeVec3f *jump = new SoComposeVec3f;

height->max = 14.0; height->frequency = 1.0;height->max = 14.0; height->frequency = 1.0;
width->max = 30; width->frequency = 0.15;width->max = 30; width->frequency = 0.15;

jump->x.connectFrom(&width->output);jump->x.connectFrom(&width->output);
jump->y.connectFrom(&height->output);jump->y.connectFrom(&height->output);
jumpX->translation.connectFrom(&jump->vector);jumpX->translation.connectFrom(&jump->vector);

Engines

engine3.C

Calculator Engine ExampleCalculator Engine ExampleCalculator Engine ExampleCalculator Engine Example
SoElapsedTime *counter = new SoElapsedTime;SoElapsedTime *counter = new SoElapsedTime;
SoCalculator *calcJump = new SoCalculator;SoCalculator *calcJump = new SoCalculator;
calcJump->a.connectFrom(&counter->timeOut);calcJump->a.connectFrom(&counter->timeOut);

calcJump->expression.set1Value(0, "ta = 0.25 * a");calcJump->expression.set1Value(0, "ta = 0.25 * a");
calcJump->expression.set1ValuecalcJump->expression.set1Value
 (1, "tb=5 * fabs(cos(a/2.0))"); //y coord (1, "tb=5 * fabs(cos(a/2.0))"); //y coord
calcJump->expression.set1ValuecalcJump->expression.set1Value
 (2, "oA = vec3f(ta, tb, 0)"); //vector (2, "oA = vec3f(ta, tb, 0)"); //vector

 jumpX->translation.connectFrom(&calcJump->oA); jumpX->translation.connectFrom(&calcJump->oA);

Engines

engine4.C

Gate Engine ExampleGate Engine ExampleGate Engine ExampleGate Engine Example
mouseCB(void *data, SoEventCallback *eventCB) {mouseCB(void *data, SoEventCallback *eventCB) {
 SoGate *gate = (SoGate *) data; SoGate *gate = (SoGate *) data;
 const SoEvent *event = eventCB->getEvent(); const SoEvent *event = eventCB->getEvent();
 if (SO_MOUSE_PRESS_EVENT(event, ANY)) if (SO_MOUSE_PRESS_EVENT(event, ANY))
 if (gate->enable.getValue() == TRUE) if (gate->enable.getValue() == TRUE)
 gate->enable.setValue(FALSE); gate->enable.setValue(FALSE);
 else else
 gate->enable.setValue(TRUE); gate->enable.setValue(TRUE);
}}
main() {main() {
........
 SoElapsedTime *counter = new SoElapsedTime; SoElapsedTime *counter = new SoElapsedTime;
 SoGate *gate = new SoGate(SoMFFloat::getClassTypeId()); SoGate *gate = new SoGate(SoMFFloat::getClassTypeId());
 gate->input->connectFrom(&counter->timeOut); gate->input->connectFrom(&counter->timeOut);
 aboutY->angle.connectFrom(gate->output); aboutY->angle.connectFrom(gate->output);
........

Engines

engine5.C

SoRotorSoRotorSoRotorSoRotor

Engines

engine6.C

rootroot

rotorrotor rotorXrotorX ballball

rotor->rotation.setValue(SbVec3f(0, 0, 1), 0);rotor->rotation.setValue(SbVec3f(0, 0, 1), 0);
rotor->speed = 0.2;rotor->speed = 0.2;

SoPendulum ExampleSoPendulum ExampleSoPendulum ExampleSoPendulum Example

SoPendulum *pendulum = new SoPendulum;SoPendulum *pendulum = new SoPendulum;

pendulum->leftExtent.setValue(SbVec3f(0, 0, 1),pendulum->leftExtent.setValue(SbVec3f(0, 0, 1),
 M_PI*1.5 - M_PI/4); M_PI*1.5 - M_PI/4);
pendulum->rightExtent.setValue(SbVec3f(0, 0, 1),pendulum->rightExtent.setValue(SbVec3f(0, 0, 1),
 M_PI*1.5 + M_PI/4); M_PI*1.5 + M_PI/4);

pendulum->speed = 0.2;pendulum->speed = 0.2;

Engines

engine6.C

SoBlinkerSoBlinkerSoBlinkerSoBlinker

Engines

engine6.C

rootroot

redred rightXrightX ballballblueblue leftXleftX ballball

leftleft rightright

blinkerblinker

NodekitsNodekitsNodekitsNodekits
presented bypresented bypresented bypresented by

Lew HitchnerLew HitchnerLew HitchnerLew Hitchner

Nodekits

Node KitsNode KitsNode KitsNode Kits

● Modular organization of nodes into subgraphsModular organization of nodes into subgraphs

● Efficient collections of nodesEfficient collections of nodes

● Uniform structureUniform structure

● Code to generate scene graph is shorter andCode to generate scene graph is shorter and
 easier to understand easier to understand

Nodekits

Node Kit ClassesNode Kit ClassesNode Kit ClassesNode Kit Classes

● SoAppearanceKitSoAppearanceKit
● SoCameraKitSoCameraKit
● SoInteractionKitSoInteractionKit

–– SoDraggerSoDragger

● SoSeparatorKitSoSeparatorKit
–– SoShapeKitSoShapeKit
–– SoWrapperKitSoWrapperKit

● SoLightKitSoLightKit
● SoSceneKitSoSceneKit

Nodekits

SoAppearanceKit CatalogSoAppearanceKit CatalogSoAppearanceKit CatalogSoAppearanceKit Catalog

Nodekits

“lightModel”“lightModel”

“callbackList”“callbackList”

SoAppearanceKitSoAppearanceKit

“environment”“environment”

“drawStyle”“drawStyle”

“texture2”“texture2”

“font”“font”

“complexity”“complexity”

“material”“material”

SoShapeKit CatalogSoShapeKit CatalogSoShapeKit CatalogSoShapeKit Catalog

SoShapeKitSoShapeKit

Nodekits

Adding PartsAdding PartsAdding PartsAdding Parts

SoShapeKit *boxKit = new SoShapeKit;SoShapeKit *boxKit = new SoShapeKit;

boxKit->set(“material {diffuseColor 0.5 0.5 1.0}”);boxKit->set(“material {diffuseColor 0.5 0.5 1.0}”);

boxKit->set(“material”, “diffuseColor 0.5 0.5 1.0”);boxKit->set(“material”, “diffuseColor 0.5 0.5 1.0”);

boxKit->set(“drawStyle {style LINES}”boxKit->set(“drawStyle {style LINES}”
 “transform {scaleFactor 2.0 1.0 1.0}”); “transform {scaleFactor 2.0 1.0 1.0}”);

Nodekits

Node Kit ExampleNode Kit ExampleNode Kit ExampleNode Kit Example
 // creating a scene graph as before // creating a scene graph as before
 SoSphere *globe = new SoSphere; SoSphere *globe = new SoSphere;
 SoMaterial *globeMat = new SoMaterial; SoMaterial *globeMat = new SoMaterial;
 globeMat->diffuseColor.setValue(0.5, 0.5, 1.0); globeMat->diffuseColor.setValue(0.5, 0.5, 1.0);
 SoTransform *globeX = new SoTransform; SoTransform *globeX = new SoTransform;
 gloveX->scaleFactor.setValue(2.0, 1.0, 1.0); gloveX->scaleFactor.setValue(2.0, 1.0, 1.0);
 root->addChild(globeMat); root->addChild(globeMat);
 root->addChild(globeX); root->addChild(globeX);
 root->addChild(globe); root->addChild(globe);

 // using a Node Kit // using a Node Kit
 SoShapeKit *globeKit = new SoShapeKit; SoShapeKit *globeKit = new SoShapeKit;
 globeKit->setPart(“shape”, new SoSphere); globeKit->setPart(“shape”, new SoSphere);
 globeKit->set(“material {diffuceColor 0.5 0.5 1.0}” globeKit->set(“material {diffuceColor 0.5 0.5 1.0}”
 “transform {scaleFactor 2.0 1.0 1.0}”); “transform {scaleFactor 2.0 1.0 1.0}”);
 root->addChild(globeKit); root->addChild(globeKit);

Nodekits

nodekit1.C

getPart()getPart()getPart()getPart()

● Returns a pointer to named part in the node kitReturns a pointer to named part in the node kit

● TRUE creates part if not there; FALSE does notTRUE creates part if not there; FALSE does not

● Examples:Examples:
 box = (SoShapeKit *) boxKit->getPart(“shape”); box = (SoShapeKit *) boxKit->getPart(“shape”);

 SoTransform *dragX; SoTransform *dragX;
 dragX = (SoTransform)(boxKit-> dragX = (SoTransform)(boxKit->
 getPart(“transform”, TRUE)); getPart(“transform”, TRUE));

Nodekits

setPart()setPart()setPart()setPart()

● Inserts node into node kitInserts node into node kit

● NULL pointer deletes nodeNULL pointer deletes node

● Examples:Examples:
 boxKit->setPart(“shape”, new SoSphere); boxKit->setPart(“shape”, new SoSphere);

 SoMaterial *newMat = new Material; SoMaterial *newMat = new Material;
 boxKit->setPart(“material”, newMat); boxKit->setPart(“material”, newMat);

 boxKit->setPart(“transform”, NULL); boxKit->setPart(“transform”, NULL);

Nodekits

Motion Hierarchy Scene GraphMotion Hierarchy Scene GraphMotion Hierarchy Scene GraphMotion Hierarchy Scene Graph

Nodekits

nodekit2.C

gearsgears

leftGearShaftleftGearShaft leftGearMarkleftGearMark

leftGearleftGear

rightGearShaftrightGearShaft rightGearMarkrightGearMark

rightGearrightGear

Motion Hierarchy ExampleMotion Hierarchy ExampleMotion Hierarchy ExampleMotion Hierarchy Example
SoShapeKit *gears = new SoShapeKit;SoShapeKit *gears = new SoShapeKit;
gears->setPart(“shape”, NULL);gears->setPart(“shape”, NULL);
gears->set(“transform” {rotation 1 0 0 -0.7854}”);gears->set(“transform” {rotation 1 0 0 -0.7854}”);
root->addChild(gears);root->addChild(gears);

// build left gear...// build left gear...
SoShapeKit *leftGear = new SoShapeKit;SoShapeKit *leftGear = new SoShapeKit;
leftGear->setPart(“shape”, new SoCylinder);leftGear->setPart(“shape”, new SoCylinder);
SoCylinder *cyl = (SoCylinder *)SoCylinder *cyl = (SoCylinder *)
 leftGear->getPart(“shape”,TRUE); leftGear->getPart(“shape”,TRUE);
cyl->radius = 2.0;cyl->radius = 2.0;
cyl->height = 0.3;cyl->height = 0.3;
gears->setPart(“childList[0]”, leftGear);gears->setPart(“childList[0]”, leftGear);

Nodekits

nodekit2.C

Draggers andDraggers andDraggers andDraggers and
ManipulatorsManipulatorsManipulatorsManipulators

presented bypresented bypresented bypresented by

Lew HitchnerLew HitchnerLew HitchnerLew Hitchner

Draggers &
Manipulators

DraggersDraggersDraggersDraggers

● Nodes in scene graph with special geometry andNodes in scene graph with special geometry and
user interfaceuser interface

● Connect dragger fields to node fields or enginesConnect dragger fields to node fields or engines
● Callback functions can be invoked when draggerCallback functions can be invoked when dragger

interaction starts or stops, when the mouseinteraction starts or stops, when the mouse
moves, or when dragger fields changemoves, or when dragger fields change

● Build complex draggers from simple onesBuild complex draggers from simple ones
● Create new draggers for different geometriesCreate new draggers for different geometries
● Draggers may be connected to anything, not justDraggers may be connected to anything, not just

geometry fieldsgeometry fields

Draggers &
Manipulators

Dragger ClassesDragger ClassesDragger ClassesDragger Classes

● Translations:Translations:
–– SoTranslate1Dragger, SoTranslate2DraggerSoTranslate1Dragger, SoTranslate2Dragger

● Scales:Scales:
–– SoScale1Dragger, SoScale2Dragger,SoScale1Dragger, SoScale2Dragger,

SoScale2UniformDragger, SoScaleUniformDraggerSoScale2UniformDragger, SoScaleUniformDragger

● Rotates:Rotates:
–– SoRotateCylindricalDragger, SoRotateDiskDragger,SoRotateCylindricalDragger, SoRotateDiskDragger,

SoRotateSphericalDraggerSoRotateSphericalDragger

● Combos:Combos:
–– SoTrackballDragger, SoJackDragger,SoTrackballDragger, SoJackDragger,

SoHandleBoxDragger, SoTransformBoxDragger, etcSoHandleBoxDragger, SoTransformBoxDragger, etc

● Lights:Lights:
–– SoSpotLightDragger, SoPointLightDragger, etcSoSpotLightDragger, SoPointLightDragger, etc

Draggers &
Manipulators

dragger1.C

Simple Dragger Scene GraphSimple Dragger Scene GraphSimple Dragger Scene GraphSimple Dragger Scene Graph

Draggers &
Manipulators

dragger2.C

decompdecomp
draggerdragger

cubecube

rootroot

Simple Dragger ExampleSimple Dragger ExampleSimple Dragger ExampleSimple Dragger Example
SoTranslate1Dragger *dragger = new SoTranslate1Dragger;SoTranslate1Dragger *dragger = new SoTranslate1Dragger;
root->addChild(dragger);root->addChild(dragger);

SoCube *cube = new SoCube;SoCube *cube = new SoCube;
root->addChild(cube);root->addChild(cube);

//hook dragger to engine//hook dragger to engine
SoDecomposeVec3f *decomp = new SoDecomposeVec3f;SoDecomposeVec3f *decomp = new SoDecomposeVec3f;
decomp->vector.connectFrom(&dragger->translation);decomp->vector.connectFrom(&dragger->translation);

// ... and hook engine to cube// ... and hook engine to cube
cube->width.connectFrom(&decomp->x);cube->width.connectFrom(&decomp->x);

Draggers &
Manipulators

dragger2.C

Dragger CallbacksDragger CallbacksDragger CallbacksDragger Callbacks

● Start callbacks:Start callbacks:
–– addStartCallback(), removeStartCallback()addStartCallback(), removeStartCallback()

● Motion callbacks:Motion callbacks:
–– addMotionCallback(), removeMotionCallback()addMotionCallback(), removeMotionCallback()

● Value-changed callbacks:Value-changed callbacks:
–– addValueChangedCallback(),addValueChangedCallback(),

removeValueChangedCallback()removeValueChangedCallback()

● Finish callbacks:Finish callbacks:
–– addFinishCallback(), removeFinishCallback()addFinishCallback(), removeFinishCallback()

Draggers &
Manipulators

Dragger Callback ExampleDragger Callback ExampleDragger Callback ExampleDragger Callback Example
void dragStartCB(void *mat, SoDragger *) {void dragStartCB(void *mat, SoDragger *) {
 ((SoMaterial *)mat)-> ((SoMaterial *)mat)->
 diffuseColor.setValue(1.0, 0.5, 0.5);} diffuseColor.setValue(1.0, 0.5, 0.5);}

void dragEndCB(void *mat, SoDragger *) {void dragEndCB(void *mat, SoDragger *) {
 ((SoMaterial *)mat)-> ((SoMaterial *)mat)->
 diffuseColor.setValue(0.5, 1.0, 1.0);} diffuseColor.setValue(0.5, 1.0, 1.0);}
main() {main() {
 SoMaterial *boxColor = new SoMaterial; SoMaterial *boxColor = new SoMaterial;
 boxColor->diffuseColor.setValue(0.5, 1.0, 1.0); boxColor->diffuseColor.setValue(0.5, 1.0, 1.0);
 SoTranslate1Dragger *drag = new SoTranslate1Dragger; SoTranslate1Dragger *drag = new SoTranslate1Dragger;
 drag->addStartCallback(dragStartCB, boxColor); drag->addStartCallback(dragStartCB, boxColor);
 drag->addFinishCallback(dragEndCB, boxColor); drag->addFinishCallback(dragEndCB, boxColor);

Draggers &
Manipulators

dragger3.C

Multiple Dragger ExampleMultiple Dragger ExampleMultiple Dragger ExampleMultiple Dragger Example
SoTransform *xTrans = new SoTransform;SoTransform *xTrans = new SoTransform;
xTrans->translation.setValue(0.0, -2.0, 4.0);xTrans->translation.setValue(0.0, -2.0, 4.0);
SoTranslate1Dragger *xDragger = new SoTranslate1Dragger;SoTranslate1Dragger *xDragger = new SoTranslate1Dragger;
xSep->addChild(xTrans); xSep->addChild(xDragger);xSep->addChild(xTrans); xSep->addChild(xDragger);
root->addChild(xSep);root->addChild(xSep);
......
SoTransform *scale = new SoTransform; root->addChild(scale);SoTransform *scale = new SoTransform; root->addChild(scale);
SoSphere *ball = new SoSphere; root->addChild(ball);SoSphere *ball = new SoSphere; root->addChild(ball);

SoCalculator *calc = new SoCalculator;SoCalculator *calc = new SoCalculator;
calc->A.connectFrom(&xDragger->translation);calc->A.connectFrom(&xDragger->translation);
calc->B.connectFrom(&yDragger->translation);calc->B.connectFrom(&yDragger->translation);
calc->C.connectFrom(&zDragger->translation);calc->C.connectFrom(&zDragger->translation);
calc->expression = “oA = vec3f(A[0], B[0], C[0])”;calc->expression = “oA = vec3f(A[0], B[0], C[0])”;
scale->scaleFactor.connectFrom(&calc->oA);scale->scaleFactor.connectFrom(&calc->oA);

Draggers &
Manipulators

dragger4.C

ManipulatorsManipulatorsManipulatorsManipulators

● Manipulators are instances of nodes withManipulators are instances of nodes with
interactively editable geometryinteractively editable geometry

Draggers &
Manipulators

dragger5.C

Swapping Nodes and ManipulatorsSwapping Nodes and ManipulatorsSwapping Nodes and ManipulatorsSwapping Nodes and Manipulators

● replaceNode() method replaces a node with itsreplaceNode() method replaces a node with its
editable versioneditable version

● replaceManip() restores the node with its newreplaceManip() restores the node with its new
valuesvalues

● Example:Example:
 trackBall = new SoTrackballManip; trackBall = new SoTrackballManip;
 pathX = createPathtoTransform(pickPath); pathX = createPathtoTransform(pickPath);
 track->replaceNode(pathX); track->replaceNode(pathX);
 … …
 track->replaceManip(pathX, new SoTransform); track->replaceManip(pathX, new SoTransform);

Draggers &
Manipulators

Types of ManipulatorsTypes of ManipulatorsTypes of ManipulatorsTypes of Manipulators

● SoTransformManip replaces transformationsSoTransformManip replaces transformations

● SoPointLightManip, SoDirectionalLightManip,SoPointLightManip, SoDirectionalLightManip,
and SoSpotLightManip replace lightsand SoSpotLightManip replace lights

● Manipulators may be customized by replacingManipulators may be customized by replacing
geometry, but functionality may not be changedgeometry, but functionality may not be changed

Draggers &
Manipulators

Cool Nodes andCool Nodes andCool Nodes andCool Nodes and
other topicsother topicsother topicsother topics

presented bypresented bypresented bypresented by

Chris BuckalewChris BuckalewChris BuckalewChris Buckalew

Node ReferencesNode ReferencesNode ReferencesNode References

● Create nodes with the Create nodes with the newnew operator, rarely on operator, rarely on
the stackthe stack

● A node’s reference count is incremented by:A node’s reference count is incremented by:
–– adding the node to a groupadding the node to a group
–– including the node in a pathincluding the node in a path
–– manual reference with manual reference with ref()ref()

● A node’s reference count is decremented by:A node’s reference count is decremented by:
–– removing the node from a groupremoving the node from a group
–– deleting a path containing the nodedeleting a path containing the node
–– manual dereference with manual dereference with unref()unref()

● Inventor automatically deletes a node when itsInventor automatically deletes a node when its
reference count is decremented to zeroreference count is decremented to zero

Scene
Database

Problem: how to remove B from A and add to D?Problem: how to remove B from A and add to D?

Solutions: add B to D first, or manually increment B’s countSolutions: add B to D first, or manually increment B’s count

D->addChild(B); B->ref();D->addChild(B); B->ref();
A->removeChild(B); A->removeChild(B);A->removeChild(B); A->removeChild(B);
 D->addChild(B); D->addChild(B);

Managing the Scene DatabaseManaging the Scene DatabaseManaging the Scene DatabaseManaging the Scene Database

Scene
Database

DD

BB

AA

CC

00 00

11 22

Problem: how to delete A?Problem: how to delete A?

Solution: manually decrement A’s reference count. This alsoSolution: manually decrement A’s reference count. This also
decrements B and C by onedecrements B and C by one

A->unref();A->unref();

Managing the Scene Database (cont)Managing the Scene Database (cont)Managing the Scene Database (cont)Managing the Scene Database (cont)

Scene
Database

DD

BB

AA

CC

00 00

11 22

Problem: Actions such as rendering create then delete paths.Problem: Actions such as rendering create then delete paths.
This would increment then decrement A’s reference countThis would increment then decrement A’s reference count
back to 0, deleting A.back to 0, deleting A.

Solution: manually increment A’s reference count. This mustSolution: manually increment A’s reference count. This must
ordinarily be done to root nodes.ordinarily be done to root nodes.

Managing the Scene Database (cont)Managing the Scene Database (cont)Managing the Scene Database (cont)Managing the Scene Database (cont)

Scene
Database

DD

BB

AA

CC

00 00

11 22

Managing the Scene Database (cont)Managing the Scene Database (cont)Managing the Scene Database (cont)Managing the Scene Database (cont)

● Never allocate nodes, paths, or engines in arrays -Never allocate nodes, paths, or engines in arrays -
causes problems when Inventor tries to delete onecauses problems when Inventor tries to delete one
element from the arrayelement from the array

● Never declare nodes, paths, or engines on theNever declare nodes, paths, or engines on the
stack - may cause problems becasue nodes maystack - may cause problems becasue nodes may
go out of scope before Inventor removes themgo out of scope before Inventor removes them
from the scene database.from the scene database.

● Common problem is trying to access a node thatCommon problem is trying to access a node that
has been automatically deleted by Inventor.has been automatically deleted by Inventor.

Scene
Database

Common Problem ExampleCommon Problem ExampleCommon Problem ExampleCommon Problem Example
SoSphere *buildSphere() {SoSphere *buildSphere() {
 SoSphere *ball = new SoSphere; SoSphere *ball = new SoSphere;
 // ref count now 0 // ref count now 0

 ba = new SoGetBoundingBoxAction; ba = new SoGetBoundingBoxAction;
 ba->apply(ball); ba->apply(ball);
 // ref count goes to 1 then back to 0 // ref count goes to 1 then back to 0
 box = ba->getBoundingBox; box = ba->getBoundingBox;

 // since ref count decremented to 0, ball is deleted // since ref count decremented to 0, ball is deleted
 return ball; return ball;
 // here comes a core dump // here comes a core dump
}}

Scene
Database

Virgin NodesVirgin NodesVirgin NodesVirgin Nodes

 Sometimes we want to use a node but keep its Sometimes we want to use a node but keep its
reference count at zero:reference count at zero:

SoSphere *buildSphere() {SoSphere *buildSphere() {
 SoSphere ball = new SoSphere; SoSphere ball = new SoSphere;
 ball->ref(); ball->ref();

 ba = new SoGetBoundingBoxAction; ba = new SoGetBoundingBoxAction;
 ba->apply(ball); ba->apply(ball);
 box = ba->getBoundingBox; box = ba->getBoundingBox;

 ball->unrefNoDelete(); ball->unrefNoDelete();
 return ball; return ball;

Scene
Database

Subclasses of SoGroupSubclasses of SoGroupSubclasses of SoGroupSubclasses of SoGroup

● SoSwitch and SoBlinkerSoSwitch and SoBlinker
–– traverses only one childtraverses only one child

● SoLODSoLOD
–– different object resolutions at different distancesdifferent object resolutions at different distances

● SoArray and SoMultipleCopySoArray and SoMultipleCopy
–– traverse multiple copies of childrentraverse multiple copies of children

● SoPathSwitchSoPathSwitch
–– traverses children if current path matches path fieldtraverses children if current path matches path field

● SoTransformSeparatorSoTransformSeparator
–– saves and restores only transform statesaves and restores only transform state

● SoAnnotationSoAnnotation
–– children traversed after rest of scene graphchildren traversed after rest of scene graph

Cool Nodes

SoSwitch and SoBlinkerSoSwitch and SoBlinkerSoSwitch and SoBlinkerSoSwitch and SoBlinker

● SoSwitch visits only one of its children,SoSwitch visits only one of its children,
determined by the whichChild fielddetermined by the whichChild field

● Default: whichChild = SO_SWITCH_NONEDefault: whichChild = SO_SWITCH_NONE
● Example:Example:

 SoSwitch *switch = new SoSwitch; SoSwitch *switch = new SoSwitch;
 switch->addChild(A); switch->addChild(A);
 switch->addChild(B); switch->addChild(B);
 switch->insertChild(C, 1); switch->insertChild(C, 1);
 switch->whichChild = 2; switch->whichChild = 2;

● SoBlinker includes an engine which automaticallySoBlinker includes an engine which automatically
cycles through childrencycles through children

Cool Nodes

SoLODSoLODSoLODSoLOD

● Specify same object with different levels of detailSpecify same object with different levels of detail

● SoLOD is a subclassed group node; only one childSoLOD is a subclassed group node; only one child
is traversed based on distance to camerais traversed based on distance to camera

● range: array of floats determine changeoverrange: array of floats determine changeover
 points points

● center: point in object space with which distancecenter: point in object space with which distance
 to camera is computed to camera is computed

Cool Nodes

nodes1.C

SoDrawStyleSoDrawStyleSoDrawStyleSoDrawStyle

● style:style:
–– FILLED, LINES, POINTS, INVISIBLEFILLED, LINES, POINTS, INVISIBLE

● pointSize:pointSize:
–– radius of points; units are printer’s pointsradius of points; units are printer’s points
–– default is 0.0; uses fastest value for renderingdefault is 0.0; uses fastest value for rendering

● lineWidth:lineWidth:
–– width in points, default is 0.0width in points, default is 0.0

● linePattern:linePattern:
–– 0x0 to 0xffff for invisible to solid0x0 to 0xffff for invisible to solid

● Points and lines are best rendered withPoints and lines are best rendered with
 BASE_COLOR lighting BASE_COLOR lighting

Cool Nodes

nodes2.C

SoLightModelSoLightModelSoLightModelSoLightModel

● model:model:
 BASE_COLOR - ignores light sources and uses BASE_COLOR - ignores light sources and uses
 only diffuseColor and transparency values for only diffuseColor and transparency values for
 shading shading

 PHONG - uses all lights and surface normals to PHONG - uses all lights and surface normals to
 compute shading compute shading

Cool Nodes

nodes3.C

SoEnvironmentSoEnvironmentSoEnvironmentSoEnvironment

● ambientIntensityambientIntensity
● ambientColorambientColor
● attenuation: vector of squared, linear, andattenuation: vector of squared, linear, and

constant attenuation with distance from lightsconstant attenuation with distance from lights
● fogType:fogType:

–– NONENONE
–– HAZE: opacity linear with distanceHAZE: opacity linear with distance
–– FOG: opacity exponential with distanceFOG: opacity exponential with distance
–– SMOKE: opacity exponential-squared with distanceSMOKE: opacity exponential-squared with distance

● fogColorfogColor
● fogVisibility: distance at which objects are totallyfogVisibility: distance at which objects are totally

obscuredobscured

Cool Nodes

nodes4.C

SoComplexitySoComplexitySoComplexitySoComplexity

● Governs amount of tesselation for spheres,Governs amount of tesselation for spheres,
cylinders, NURBS, etc.cylinders, NURBS, etc.

● Fields:Fields:
–– value: 0.0 is minimum tesselation and 1.0 is maximumvalue: 0.0 is minimum tesselation and 1.0 is maximum
–– type:type:
 OBJECT_SPACE OBJECT_SPACE
 SCREEN_SPACE SCREEN_SPACE
 BOUNDING_BOX BOUNDING_BOX
–– textureQuality: filtering leveltextureQuality: filtering level

● Example shows SCREEN_SPACE andExample shows SCREEN_SPACE and
OBJECT_SPACE complexitiesOBJECT_SPACE complexities

Cool Nodes

nodes5.C

ShapeHints NodeShapeHints NodeShapeHints NodeShapeHints Node

● vertexOrderingvertexOrdering
–– UNKNOWN_ORDERINGUNKNOWN_ORDERING
–– CLOCKWISECLOCKWISE
–– COUNTERCLOCKWISECOUNTERCLOCKWISE

● shapeTypeshapeType
–– UNKNOWN_SHAPE_TYPEUNKNOWN_SHAPE_TYPE
–– SOLIDSOLID

● faceTypefaceType
–– UNKNOWN_FACE_TYPEUNKNOWN_FACE_TYPE
–– CONVEXCONVEX

● creaseAngle: adjacent facets share normal if anglecreaseAngle: adjacent facets share normal if angle
between normals less than this fieldbetween normals less than this field

Cool Nodes

nodes6.C

SoUnitsSoUnitsSoUnitsSoUnits

● Automatically scales objects with different unitsAutomatically scales objects with different units
so that they all display at the correct sizeso that they all display at the correct size

● unit:unit:
 METERS CENTIMETERS METERS CENTIMETERS
 MILLIMETERS MICROMETERS MILLIMETERS MICROMETERS
 MICRONS NANOMETERS MICRONS NANOMETERS
 ANGSTROMS KILOMETERS ANGSTROMS KILOMETERS
 FEET INCHES FEET INCHES
 POINTS YARDS POINTS YARDS
 MILES NAUTICAL_MILES MILES NAUTICAL_MILES

Cool Nodes

Inventor File FormatInventor File FormatInventor File FormatInventor File Format

● Inventor’s file format is used for reading andInventor’s file format is used for reading and
storing scene graphs, paths, or nodes to and fromstoring scene graphs, paths, or nodes to and from
ASCII filesASCII files

● Users can edit files rather than edit and recompileUsers can edit files rather than edit and recompile
programsprograms

● Complex scene geometry may be read in fromComplex scene geometry may be read in from
files modularlyfiles modularly

● File format is used for cutting and pastingFile format is used for cutting and pasting
between windows or processesbetween windows or processes

● File format is also used to specify node kit partsFile format is also used to specify node kit parts

File Format

Reading a File into the DatabaseReading a File into the DatabaseReading a File into the DatabaseReading a File into the Database

SoNode* readIvFile(const char *filename) {SoNode* readIvFile(const char *filename) {
 SoInput sceneInput; SoInput sceneInput;
 SoDB::init(); SoDB::init();
 if (! sceneInput.openFile(filename)) if (! sceneInput.openFile(filename))
 cout<<“problem opening file”<<filename; cout<<“problem opening file”<<filename;
 SoSeparator *node = SoDB::readAll(&sceneInput); SoSeparator *node = SoDB::readAll(&sceneInput);
 if (! node) { if (! node) {
 cout<<“problem reading file”<<filename; cout<<“problem reading file”<<filename;
 sceneInput.closeFile(); sceneInput.closeFile();
 return node; return node;
}}

File Format

file1.C

File Format ExampleFile Format ExampleFile Format ExampleFile Format Example

Separator {Separator {
 PerspectiveCamera {position 0 0 -3.4496} PerspectiveCamera {position 0 0 -3.4496}
 DirectionalLight{ } DirectionalLight{ }
 Transform { Transform {
 translation 3.89 -7.5 6.0 translation 3.89 -7.5 6.0
 scaleFactor 1.0 1.0 2.5 } scaleFactor 1.0 1.0 2.5 }
 Separator { Separator {
 Material {diffuseColor 1.0 0.5 1.0} Material {diffuseColor 1.0 0.5 1.0}
 Sphere { } Sphere { }
 } }
}}

File Format

Different FormatsDifferent FormatsDifferent FormatsDifferent Formats

● Formats for writing:Formats for writing:
–– EnginesEngines
–– Field connectionsField connections
–– Global fieldsGlobal fields
–– Shared instances of nodesShared instances of nodes
–– PathsPaths
–– Node kitsNode kits

● Can also read from a stringCan also read from a string

File Format

Event HandlingEvent HandlingEvent HandlingEvent Handling
presented bypresented bypresented bypresented by

John ReadeyJohn ReadeyJohn ReadeyJohn Readey

Input Processing & EventsInput Processing & EventsInput Processing & EventsInput Processing & Events

● Events are generated by the keyboard and mouseEvents are generated by the keyboard and mouse
(or other input devices)(or other input devices)

● Many Inventor classes respond to events (e.g.Many Inventor classes respond to events (e.g.
Manipulators)Manipulators)

● The developer can overide the default behavior byThe developer can overide the default behavior by
–– Subclassing an Inventor class and modifying theSubclassing an Inventor class and modifying the

behaviorbehavior
–– Intercepting the event before it is processed byIntercepting the event before it is processed by

InventorInventor

Event
Handling

 Inventor Events Inventor Events Inventor Events Inventor Events

● Window specific events (XEvents in UNIX,Window specific events (XEvents in UNIX,
messages in Windows NT/95) are translated bymessages in Windows NT/95) are translated by
the component library into Inventor specificthe component library into Inventor specific
SoEvents.SoEvents.

● Each SoEvent instance contains information on:Each SoEvent instance contains information on:
–– Type type of event (keyboard, mouse button, mouseType type of event (keyboard, mouse button, mouse

move, etc)move, etc)
–– The time the event occuredThe time the event occured
–– The cursor position at the time of the eventThe cursor position at the time of the event
–– The state of the modifier keys (control, shift, alt) whenThe state of the modifier keys (control, shift, alt) when

the event ocurredthe event ocurred

Event
Handling

Event ProcessingEvent ProcessingEvent ProcessingEvent Processing

MS Windows MS Windows
messagesmessages

SoMfcRenderAreaSoMfcRenderArea
Event TranslatorEvent Translator

SoEventsSoEvents

SoSceneManagerSoSceneManager

SoGLRenderActionSoGLRenderAction::
SoHandleEventActionSoHandleEventAction()

DatabaseDatabase

Window System SpecificWindow System Specific

Window System IndependentWindow System Independent

Event
Handling

Picking using the SoSelection NodePicking using the SoSelection NodePicking using the SoSelection NodePicking using the SoSelection Node

● The SoSelection node is a group class that is The SoSelection node is a group class that is
typically inserted near the top of the scene graph.typically inserted near the top of the scene graph.
It handles any event that its children don’tIt handles any event that its children don’t
handle.handle.

● It maintains a selection list of picked objectsIt maintains a selection list of picked objects
according to a policy set in the policy field:according to a policy set in the policy field:
–– SINGLE: one object at a time, mouse pick on nothingSINGLE: one object at a time, mouse pick on nothing

clears selectionclears selection
–– TOGGLE: multiple objects, left mouse pick togglesTOGGLE: multiple objects, left mouse pick toggles

selection statusselection status
–– SHIFT: when shift key is down, policy is TOGGLE;SHIFT: when shift key is down, policy is TOGGLE;

when shift key is up, policy is SINGLEwhen shift key is up, policy is SINGLE

Event
Handling

Selection ExampleSelection ExampleSelection ExampleSelection Example

Event
Handling

events1.C

main()main()
SoSelection *sel = new SoSelection;SoSelection *sel = new SoSelection;
sel->policy = SoSelection::SHIFT;sel->policy = SoSelection::SHIFT;
sel->addSelectionCallback(selectCB, highMat);sel->addSelectionCallback(selectCB, highMat);
……
}}
void selectCB(void *data, SoPath *selectionPath) {void selectCB(void *data, SoPath *selectionPath) {
 SoMaterial *highMat = (SoMaterial *) data; SoMaterial *highMat = (SoMaterial *) data;
 if (selectionPath->getTail()->isOfType(..sphere..) if (selectionPath->getTail()->isOfType(..sphere..)
 highMat->transparency = 0.4; highMat->transparency = 0.4;
}}

Handling Events with Callback NodesHandling Events with Callback NodesHandling Events with Callback NodesHandling Events with Callback Nodes

● The SoEventCallback node can be inserted into aThe SoEventCallback node can be inserted into a
scenegraph to provide application specificscenegraph to provide application specific
behavior. The developer can provide a callbackbehavior. The developer can provide a callback
function that will be invoked whenever the nodefunction that will be invoked whenever the node
receives an event of the proper type.receives an event of the proper type.

● Example:Example:
 // An event callback node so we can receive key press// An event callback node so we can receive key press
 // events // events
 SoEventCallback *myEventCB = new SoEventCallback; SoEventCallback *myEventCB = new SoEventCallback;
 myEventCB->addEventCallback(myEventCB->addEventCallback(
 SoKeyboardEvent::getClassTypeId(), SoKeyboardEvent::getClassTypeId(),
 myKeyPressCB, selectionRoot); myKeyPressCB, selectionRoot);
 selectionRoot->addChild(myEventCB); selectionRoot->addChild(myEventCB);

Event
Handling

Bypassing Inventor Event HandlingBypassing Inventor Event HandlingBypassing Inventor Event HandlingBypassing Inventor Event Handling

● The application can intercept events (in the nativeThe application can intercept events (in the native
window system dependent format) beforewindow system dependent format) before
Inventor receives them.Inventor receives them.

● Events can also be processed by the applicationEvents can also be processed by the application
and then passed on to the Inventor eventand then passed on to the Inventor event
handling mechanism.handling mechanism.

Event
Handling

SoMFC Event Handling ExampleSoMFC Event Handling ExampleSoMFC Event Handling ExampleSoMFC Event Handling Example
voidvoid
CDropView::OnMouseMove(UINT nFlags, CPoint point)CDropView::OnMouseMove(UINT nFlags, CPoint point)
{{
 movement[0] = locator[0]; movement[0] = locator[0];
 movement[1] = locator[1]; movement[1] = locator[1];
 locator[0] = windowSize[0] - point.x; locator[0] = windowSize[0] - point.x;
 locator[1] = windowSize[1] - point.y; locator[1] = windowSize[1] - point.y;
 if (mode == TRANS_MODE) if (mode == TRANS_MODE)

translateCamera();translateCamera();
 else if (mode == ROT_MODE) else if (mode == ROT_MODE)

rotateCamera();rotateCamera();

 SoMfcView::OnMouseMove(nFlags, point); SoMfcView::OnMouseMove(nFlags, point);
}}

Event
Handling

events2.C

Interfacing to theInterfacing to theInterfacing to theInterfacing to the
Windowing SystemWindowing SystemWindowing SystemWindowing System

presented bypresented bypresented bypresented by

John ReadeyJohn ReadeyJohn ReadeyJohn Readey

 Inventor Component Library Inventor Component Library Inventor Component Library Inventor Component Library

● The Inventor Component Library containsThe Inventor Component Library contains
reusable modules with a built-in user interface.reusable modules with a built-in user interface.

● Component classes are typically window systemComponent classes are typically window system
dependent.dependent.

● Typical Component classes include:Typical Component classes include:
–– Viewers for displaying a sceneViewers for displaying a scene
–– Editors to change properties of a node Editors to change properties of a node

Inventor
Component
Library

Component Classes for Windows NT/95Component Classes for Windows NT/95Component Classes for Windows NT/95Component Classes for Windows NT/95

● PGI supplies two different component librariesPGI supplies two different component libraries
with Open Inventor for Windows NTwith Open Inventor for Windows NT
–– WinSoXtWinSoXt
–– SoMFCSoMFC

● WinSoXt includes classes compatible with theWinSoXt includes classes compatible with the
SoXt classes on UNIX versions of Inventor.SoXt classes on UNIX versions of Inventor.

● WinSoXt classes are:WinSoXt classes are:
–– Familiar (if you have experience with SoXt)Familiar (if you have experience with SoXt)
–– Easy to use (your entire program can be just a dozenEasy to use (your entire program can be just a dozen

lines)lines)

● The dark side:The dark side:
–– You don’t have access to native Windows features.You don’t have access to native Windows features.

Inventor
Component
Library

Xt ComponentsXt ComponentsXt ComponentsXt Components

● Editors:Editors:
–– SoXtMaterialEditorSoXtMaterialEditor
–– SoXtMaterialListSoXtMaterialList
–– SoXtLightSliderSetSoXtLightSliderSet
–– SoXtMaterialSliderSetSoXtMaterialSliderSet
–– SoXtTransformSliderSetSoXtTransformSliderSet

● Viewers:Viewers:
–– SoXtFullViewerSoXtFullViewer
–– SoXtFlyViewerSoXtFlyViewer
–– SoXtWalkViewerSoXtWalkViewer
–– SoXtExaminerViewerSoXtExaminerViewer
–– SoXtPlaneViewerSoXtPlaneViewer

Inventor
Component
Library

MaterialEditor ExampleMaterialEditor ExampleMaterialEditor ExampleMaterialEditor Example

● Pass values back with a callback, ORPass values back with a callback, OR
● Attach the editor to a node directlyAttach the editor to a node directly

SoXtMaterialEditor *headEdit = new SoXtMater…;SoXtMaterialEditor *headEdit = new SoXtMater…;
SoMaterial *headM = new SoMaterial;SoMaterial *headM = new SoMaterial;
headEdit->attach(headM);headEdit->attach(headM);

renderArea->show();renderArea->show();
SoXt::show(window);SoXt::show(window);
headEdit->show();headEdit->show();
SoXt::mainLoop();SoXt::mainLoop();

Inventor
Component
Library

complib1.C

SoMFC ComponentsSoMFC ComponentsSoMFC ComponentsSoMFC Components

● MFC is a widely popular C++ class libraryMFC is a widely popular C++ class library
developed by Microsoft and used for Windows-developed by Microsoft and used for Windows-
based application development.based application development.

● SoMFC is an MFC Extension library that enablesSoMFC is an MFC Extension library that enables
MFC based applications to incorporate Inventor.MFC based applications to incorporate Inventor.

● It includes more than 30 classes that provide:It includes more than 30 classes that provide:
–– ViewersViewers
–– EditorsEditors
–– Printing SupportPrinting Support
–– OLE IntegrationOLE Integration

Inventor
Component
Library

The Document/View ArchitecureThe Document/View ArchitecureThe Document/View ArchitecureThe Document/View Architecure

● The document and view classes are fundamentalThe document and view classes are fundamental
to MFC.to MFC.

● Document classes are used to encapsulate theDocument classes are used to encapsulate the
data data an application deals with.an application deals with.

● View classes encapsulate how the data isView classes encapsulate how the data is
presented to the user.presented to the user.

● Applications can beApplications can be
–– SDI (just one document and one view)SDI (just one document and one view)
–– MDI (multiple documents and views)MDI (multiple documents and views)

Inventor
Component
Library

Integration of MFC and InventorIntegration of MFC and InventorIntegration of MFC and InventorIntegration of MFC and Inventor

● MFC applications typically consist of applicationMFC applications typically consist of application
specific view and document classes derived fromspecific view and document classes derived from
the MFC classes CView and CDocument (or theirthe MFC classes CView and CDocument (or their
analogues).analogues).

● To create an Inventor SoMFC application, the userTo create an Inventor SoMFC application, the user
creates classes derived from the SoMFC classes,creates classes derived from the SoMFC classes,
SoMfcView and SoMfcDocument instead ofSoMfcView and SoMfcDocument instead of
CView and CDocument.CView and CDocument.

● The viewer instance (SoMfcRenderArea,The viewer instance (SoMfcRenderArea,
SoMfcViewer, SoMfcExaminerViewer, etc) isSoMfcViewer, SoMfcExaminerViewer, etc) is
contained in the SoMfcView object.contained in the SoMfcView object.

Inventor
Component
Library

The Class HierarchyThe Class HierarchyThe Class HierarchyThe Class Hierarchy

CDocumentCDocument

SoMfcDocSoMfcDoc

MyDocMyDoc

CViewCView

SoMfcViewSoMfcView

MyViewMyView

SoMfcRenderAreaSoMfcRenderArea

Inventor
Component
Library

SoMfc Editor ClassesSoMfc Editor ClassesSoMfc Editor ClassesSoMfc Editor Classes

● Editor classes includeEditor classes include
–– SoMfcColorEditorSoMfcColorEditor
–– SoMfcMaterialEditorSoMfcMaterialEditor
–– SoMfcHeadlightEditorSoMfcHeadlightEditor
–– SoMfcMaterialPaletteSoMfcMaterialPalette
–– SoMfcTextureMapEditorSoMfcTextureMapEditor

● Most of these classes have an interface andMost of these classes have an interface and
functionality similar to their Xt counterparts.functionality similar to their Xt counterparts.

Inventor
Component
Library

SoMfc Viewer ClassesSoMfc Viewer ClassesSoMfc Viewer ClassesSoMfc Viewer Classes

● SoMfc Viewer classes are always contained withinSoMfc Viewer classes are always contained within
SoMfcView.SoMfcView.

● They includeThey include
–– SoMfcRenderAreaSoMfcRenderArea
–– SoMfcViewerSoMfcViewer
–– SoMfcExaminerViewerSoMfcExaminerViewer
–– SoMfcFlyViewerSoMfcFlyViewer
–– SoMfcPlaneViewerSoMfcPlaneViewer
–– SoMfcWalkViewerSoMfcWalkViewer

Inventor
Component
Library

Using the Windows ClipboardUsing the Windows ClipboardUsing the Windows ClipboardUsing the Windows Clipboard

● Inventor scene objects can be cut or pasted intoInventor scene objects can be cut or pasted into
the clipboard.the clipboard.

● When pasted into a non-Inventor application anWhen pasted into a non-Inventor application an
ascii-based file description of the nodes will beascii-based file description of the nodes will be
displayed.displayed.

● When pasted into an Inventor application, theWhen pasted into an Inventor application, the
nodes can be added to the current scene graph.nodes can be added to the current scene graph.

Inventor
Component
Library

Inventor and OLEInventor and OLEInventor and OLEInventor and OLE

● OLE is an architecture developed by MicrosoftOLE is an architecture developed by Microsoft
that allows different applications to inter-operate.that allows different applications to inter-operate.

● The OLE vision is to focus on documents, ratherThe OLE vision is to focus on documents, rather
than applications.than applications.

● A common application of OLE is Object LinkingA common application of OLE is Object Linking
and Embedding. This allows an instance of anand Embedding. This allows an instance of an
OLE Server app to be placed into any OLE ClientOLE Server app to be placed into any OLE Client
Application.Application.

● Inventor based OLE Server applications can beInventor based OLE Server applications can be
embedded or linked into OLE Client applicationsembedded or linked into OLE Client applications
such as Microsoft Word or Excel.such as Microsoft Word or Excel.

Inventor
Component
Library

OptimizingOptimizingOptimizingOptimizing
Open InventorOpen InventorOpen InventorOpen Inventor

presented bypresented bypresented bypresented by

John ReadeyJohn ReadeyJohn ReadeyJohn Readey

Optimizing PerformanceOptimizing PerformanceOptimizing PerformanceOptimizing Performance

● These are some simple guidelines to performanceThese are some simple guidelines to performance
tuningtuning

● Keep in mind that performance characteristicsKeep in mind that performance characteristics
will vary with platform and graphics adapterwill vary with platform and graphics adapter

Optimizing
Open
Inventor

Turn Culling On if PossibleTurn Culling On if PossibleTurn Culling On if PossibleTurn Culling On if Possible

● For parts of the scenegraph that consist of allFor parts of the scenegraph that consist of all
closed surfaces, turn backface culling on with theclosed surfaces, turn backface culling on with the
ShapeHints node.ShapeHints node.

● For scenegraphs that contain shapes spread acrossFor scenegraphs that contain shapes spread across
a large volume (e.g. a model of the solar system),a large volume (e.g. a model of the solar system),
turn viewport culling on.turn viewport culling on.

Use Shared InstancingUse Shared InstancingUse Shared InstancingUse Shared Instancing

● If the same object is used repeatedly in your sceneIf the same object is used repeatedly in your scene
graph, create only one instance of itgraph, create only one instance of it

● This is especially important for SoTexture2 nodesThis is especially important for SoTexture2 nodes

Optimizing
Open
Inventor

Use the new Vertex Property NodeUse the new Vertex Property NodeUse the new Vertex Property NodeUse the new Vertex Property Node

● SoVertexProperty was a new node introducedSoVertexProperty was a new node introduced
with Inventor 2.1with Inventor 2.1

● The SoVertexProperty node is an efficient way toThe SoVertexProperty node is an efficient way to
specify attributes for vertex-based shape nodesspecify attributes for vertex-based shape nodes

● Properties that can be set include: coordinates,Properties that can be set include: coordinates,
normals, colors, transparency, material andnormals, colors, transparency, material and
normal bindingnormal binding

● Specify all fields for maximum performanceSpecify all fields for maximum performance

Optimizing
Open
Inventor

Vertex Property Node ExampleVertex Property Node ExampleVertex Property Node ExampleVertex Property Node Example

SoVertexProperty *earVP = new SoVertexProperty;SoVertexProperty *earVP = new SoVertexProperty;
// define material binding// define material binding
earVP->normalBinding =earVP->normalBinding =

SoNormalBinding::PER_FACE;SoNormalBinding::PER_FACE;
// define the coordinates// define the coordinates
earVP->vertex.setValues(0, 9, earVerts);earVP->vertex.setValues(0, 9, earVerts);
// define the colors// define the colors
earVP->orderedRGBA.setValues(0, 8, earColors);earVP->orderedRGBA.setValues(0, 8, earColors);
......
earFaceSet-> vertexProperty.setValue(earVP);earFaceSet-> vertexProperty.setValue(earVP);

Optimizing
Open
Inventor

Optimize your .iv files!Optimize your .iv files!Optimize your .iv files!Optimize your .iv files!

● ivFix is a new utility provided with Inventor 2.1.1ivFix is a new utility provided with Inventor 2.1.1
that will re-organize your .iv file for maximumthat will re-organize your .iv file for maximum
performanceperformance

● ivAddVP can be used to transform .iv files to useivAddVP can be used to transform .iv files to use
the SoVertexProperty Nodethe SoVertexProperty Node

● Run ivPerf to analyze performanceRun ivPerf to analyze performance

Optimizing
Open
Inventor

The Future ofThe Future ofThe Future ofThe Future of
Open InventorOpen InventorOpen InventorOpen Inventor

presented bypresented bypresented bypresented by

Silicon Graphics, IncSilicon Graphics, IncSilicon Graphics, IncSilicon Graphics, Inc

ResourcesResourcesResourcesResources

● The Inventor MentorThe Inventor Mentor and and The InventorThe Inventor
ToolmakerToolmaker, by Josie Wernecke, Addison-Wesley, by Josie Wernecke, Addison-Wesley
(also on-line on SGI machines)(also on-line on SGI machines)

● The Open Inventor C++ Reference ManualThe Open Inventor C++ Reference Manual,,
Addison-Wesley (on line as man pages)Addison-Wesley (on line as man pages)

● Web pages:Web pages:
–– Silicon Graphics: www.sgi.comSilicon Graphics: www.sgi.com
–– Portable Graphics: www.portable.comPortable Graphics: www.portable.com
–– Template Graphics: www.sd.tgs.comTemplate Graphics: www.sd.tgs.com
–– VRML home page: vrml.wired.comVRML home page: vrml.wired.com

Other
Topics

http://vrml.wired.com
http://www.sgi.com
http://www.portable.com
http://www.tgs.com

	Programming Animation Programming Animation Programming Animation Programming Animation and Interaction in and Interaction in an
	Abstract
	Speakers
	Speaker Info

	Table of Contents
	Introduction
	Sensors
	Engines
	Nodekits
	Draggers and Draggers and Manipulators
	Cool Nodes and other Cool Nodes and other topics
	Event Event Handling
	Interfacing to the Windowing Interfacing to the Windowing System
	Optimization
	The Future of Open The Future of Open Inventor

