Welcome to
Programming Animation

and Interaction in
Open Inventor

Demo Course

Sponsored by
Portable Graphics Inc

Abstract

Open Inventor is a high-level cross-platform object-~
oriented 3-D interactive graphics and animation
toolkit. This course covers necessary knowledge
for programming animation and interaction in
Open Inventor, including sensors, engines,
manipulators, events, Windows interfacing, and

performance optimization. Basic concepts will be
anchored with demonstration programs which
execute on one screen while attendees examine
associated source code on another.

Speakers

e Chris Buckalew
— buckalew@calpoly.edu (805) 756-1392
— Computer Science Dept, Cal Poly State University
San Luis Obispo, CA 93407
e John Readey
— jlr@portable.com (512) 719-8000
— Portable Graphics Inc, 3006 Longhorn Blvd Suite 105
Austin, TX 78758
e Lew Hitchner
— hitchner@phoenix.calpoly.edu (805) 756-2824
— Computer Science Dept, Cal Poly State University
San Luis Obispo, CA 93407

Speaker Info

Chris Buckalew, Associate Professor
Chris Buckalew is an Associate Professor of Computer Science at Cal Poly State University in
San Luis Obispo. H received his Ph.D. in 1990 from the University of Texas. His research
interests include photorealistic image synthesis and scientific visualization.
Dr. Buckalew’s dissertation work was published in SIGGRAPH ‘89, and he ahs also published
several articles on realistic image synthesis, scientific visualization, and computer-assisted
lecture systems. He is currently engaged in building the undergraduate Computer Graphigs
program at Cal Poly, for which work he has received five consecutive annucal Outstanding
Professor awards, voted on by the students.

John Readey, Product Manager
John Readey is the Open Inventor Product Manager at Portable Graphics Inc. He graduated
from Ohio State University in 1989 with a M.S. degree in Computer Science. He spent the
next five years at IBM where he developed IrisGl, and OpenGL software for the RS/6000.
Since moving over to PGI in 1994, he has been engaged in Open Inventor porting issues,
Inventor extensions, and VRML.

Lewis E. Hitchner, Lecturer
Dr. Hitchner obtained the Ph.D. degree from the University of Utah where he did research in
3D digital image processing and computer graphics. He was a faculty member in Compute¢r
Science at UC Santa Cruz for five years, and he is currently a lecturer in the Computer Science
Department at California Polytechnic State University. His research and industrial
employment includes four years Virtual Reality research at NASA Ames Research Center, to
years in R&D for Xtensory Inc., and Sterling Software, Inc., and VR software development
consulting for Sense8 Corp. Recently he has designed and taught technical training courses in
VR software for Sense8 Corp. He is also the editor and author of ‘The Virtual Software Rep:
published by the VR NEWS of London, UK.

Table of Contents

Introduction (Chris Buckalew)
Sensors (Chris Buckalew)

Engines (Chris Buckalew)
Nodekits (Lew Hitchner)
Draggers and Manipulators (Lew Hitchner)

Cool Nodes and other topics (Chris Buckalew)
Event Handling (John Readey)
Interfacing to the Windowing System

(John Readey)
Optimization (John Readey)
The Future of Open Inventor (SGI)

Participant Background

e Knowledge of C or C++

Introduction

e Basic computer graphics knowledge

e Some knowledge of Open Inventor: nodes, scene graph
organization, properties, traversal, etc.

What is Open Inventor?

e Object-oriented 3-D interactive graphics toolkit

e Library of objects and methods to create
interactive 3~-D graphics applications

Introduction

e Standard across many vendors and platforms

Open Inventor Component Library

Node Kits Manipulators

Scene Database

Open Inventor
Open Inventor 3D Toolkit 3-D
Interchange
File Format

Object Database

Extensible variety of primitives

Objects can be picked, highlighted, and
manipulated

Introduction

Object calculations such as bounding boxes and
intersections may be performed

Objects may be printed, searched for, rendered,
and read to and from files

Animation and Interaction

e Animation

— Sensors

— Field connections

— Engines Introduction
e Interaction

— Sensors

— Callbacks

— Selection

— Draggers

— Manipulators

Rendering Capabilities

Shapes:
— Sphere, cone, cube, cylinder
— Polyhedra
— Text and 3-D text
— NURBS curves and surfaces
— Extensible to user-defined primitives

Texture
Transparency
Access to all OpenGL rendering capabilities

Introduction

A Simple Scene Graph

The Scene
Graph and
Nodes

graph1.C

Sensors

e Timing sensors

— Automatic triggering of timed events

Introduction

e Data sensors

— Activate callback procedures when data changes

Engines

Simple engine: the field connection
— as one field changes, other fields hooked to it
automatically change

Introduction

Most engines involve some function between

connected fields

— Animation engines: real-time clock drives engines to
automatically update fields over time

— Arithmetic engines: inputs from selected fields are
to produce outputs that drive other fields

Extremely flexible
Encapsulates motion into metafile format

Draggers and Manipulators

e Scene geometry that has built-in user interface
and resulting actions

Introduction

e Dragger output may be connected to any field for
variety of applications

e Manipulators allow interactive editing of certain
nodes

Nodekits

Organize nodes into subgraphs, (like functions in
computer languages)

Introduction

Nodes are laid out in an efficient manner

Resulting code is shorter and easier to understand

Nodekits may be subclassed to create your own
nodekit types

Event Handling

Automatic event handling

— Selection node and manipulators

Introduction

Callbacks triggered by specific events

Bypass Inventor event handling and receive
events from the window system directly

Callback nodes can trigger events during scene
graph traversal

File Format

Stores scene geometry, engine motion, and
automatic event handling

Introduction

Frequently faster to edit IV files rather than edit,
recompile, and run programs

File format is used for cutting and pasting
between windows or processes

Also used to specify nodekit parts

Many converters are available

Component Library

Contains functions to communicate with the
windowing system

Includes variety of viewers and editors Inroduction
Utility functions to manage windows

Functions to customize the windows with
toolbars, buttons, and menus

Originally X-Windows; currently mature ports
for Windows95 and NT with more planned

Sensors

presented by

Chris Buckalew

Sensors

e Timer queue sensors

— Alarm sensor
Sensors

— Timer sensor

e Delay queue sensors

— Field, node, and path sensors
— Idle sensor
— Oneshot sensor

Sensor Callbacks

e Defining a callback:

static void
lightCallback(void *data, SoSensor *) {
SoDirLight *light = (SoDirLight *) data;
if (light->on.getValue() == TRUE)
light->on = FALSE;
else
light->on = TRUE;

Sensors

sensor1.C

Sensor Callbacks (cont)

e Initializing a callback function:
Sensors
SoDirLight *dLight = new SoDirLight;
SoTimerSensor *lightSensor =
new SoTimerSensor(lightCallback, dLight); censart &

lightSensor->setInterval (5.0);
lightSensor->schedule();

SoAlarmSensor Example

static void alarmCallback(void *data, SoSensor *) {
SoDirLight *light = (SoDirLight *) data;
light->on = TRUE; } Sencore
main() {
SoDirLight *dLight = new SoDirLight;

SoAlarmSensor *alarm =

sensor2.C

new SoAlarmSensor(alarmCallback, dLight);
alarm-~>setTimeFromNow(10.0);
alarm->schedule();

Data Sensors

e Sensor is attached to a field, node, or path

e Data sensors have priorities

Sensors

e When the data changes:

the sensor is scheduled according to priority

later, the delay queue is processed and
sensor is triggered
triggered sensor is removed from queue and

callback is executed

Field Sensor Example

cameralocCB(void *data, SoSensor) {
SoAlarmSensor *delay = (SoAlarmSensor *) data;
drawStyle->style = SoDrawStyle::LINES;
delay->unschedule();
delay->setTimeFromNow (3.0);
delay->schedule(); }

Sensors

main() {
SoAlarmSensor *delay = SnsIs e
new SoAlarmSensor(restoreFillCB, NULL);
SoCamera *camera = viewer->getCamera();
SoFieldSensor *fieldSensor =
new SoFieldSensor(cameral.ocCB, delay);

fieldSensor->attach(&camera->position);

Trigger Fields

Use trigger methods to find which field triggered
the callback

Sensors

Within the callback function:
SoField *changed = sensor->getTriggerField();

sensor4.C

Useful when several sensors execute the same
callback function

Trigger node finds which node triggered callback

One-Shot and Idle Sensors

e SoOneShotSensor is triggered when the delay
queue is processed
— use to delay time-consuming work

Sensors

— guaranteed to execute periodically
e SoldleSensor is triggered when there are no
events or timers to be processed
— may never be triggered if CPU stays busy

e Declay queue is processed every 1/30th second by
default

— interval may be changed with

SoDB::setDelaySensorTimeout()

Engines

presented by

Chris Buckalew

Engines

“Function boxes” : take inputs and produce
outputs

Engines

Inputs and outputs can include time or geometry

Encapsulate time and geometry changes in the
scene graph

Engines may be cascaded

Under the Hood

inputl
input2
input3

outputl
output2

Engines

Some Engine Classes

Time inputs:

— SoElapsedTime, SoOneShot, SoTimeCounter

Engines

Triggered inputs:
— SoCounter, SoOnOff, SoTriggerAny, SoGate

SoCompose and SoDecompose
Solnterpolate

SoCalculator

Field Connections

e connectFrom(SoField *field);

e connectFrom(SoEngineOutput *engineOut);

e Example: Engines
SoSphere *ball = new SoSphere;
SoCube *box = new SoCubse;

box-~>width.connectFrom (&ball->radius); engine1.C
root->addChild(ball);
root->addChild(box);

SoElapsedTime *counter = new SoElapsedTime;
ball->radius.connectFrom(&counter->timeOut); -

Making Field Connections

Connection cycles

Multiple connections

Field type conversions

disconnect()

1sConnected()

Engines

Time Input Engines

e SoElapsedTime ~ counts from start in float
seconds
— inputs: timeln, spped, on, pause, reset

Engines

— output: timeOut
e SoOneShot - runs for a set time, then stops
— inputs: timeln, duration, trigger, flags, disable
— outputs: timeOut, isActive, ramp
e SoTimeCounter - cycles through a count in
integer seconds

— inputs: timeln, min, max, step, on, frequency, duty,
reset, syncln

— outputs: output, syncOut

Elapsed-Time Engine

O o
1

\aboutY airplane

o f.!

counter

Engines

engine2.C

Elapsed-Time Example

SoRotationXYZ *aboutY = new SoRotationXYZ;
aboutY->axis = SoRotationXYZ::Y;

Engines

root->addChild(airplane);

engine2.C

SoElapsedTime *counter = new SoElapsedTime;
aboutY->angle.connectFrom (&counter>timeOut);

Time-Counter and Compose Engines

@ root

Engines

engine3.C

width

Time-Counter and Compose Engines Example

SoTranslation *jumpX = new SoTranslation;
SoTimeCounter *height = new SoTimeCounter;
SoTimeCounter *width = new SoTimeCounter;
SoComposeVec3f *jump = new SoComposeVec3f;

Engines

height->max = 14.0; height->frequency = 1.0; engines.C
width->max = 30; width->frequency = 0.15;

jump-~>x.connectFrom(&width->output);
jump-~>y.connectFrom(&height->output);
jumpX->translation.connectFrom (&jump->vector); -

Calculator Engine Example

SoElapsedTime *counter = new SoElapsedTime;
SoCalculator *calcjump = new SoCalculator;
calcJump->a.connectFrom(&counter->timeOut);
Engines
calcJump->expression.set1Value(0, "ta = 0.25 * a");
calcJump->expression.set1Value
(1, "tb=5 * fabs(cos(a/2.0))"); //ycoord | . .c
calcJump->expression.set1Value
(2, "oA = vec3f(ta, tb, 0)"); //vector

jumpX->translation.connectFrom(&calcjump->0A);

Gate Engine Example

mouseCB(void *data, SoEventCallback *eventCB) {
SoGate *gate = (SoGate *) data;
const SoEvent *event = eventCB->getEvent();
if (SO_MOUSE_PRESS_EVENT (event, ANY))
if (gate->enable.getValue() == TRUE)
gate->enable.setValue(FALSE);
else
gate->enable.setValue(TRUE);

Engines

} engine5.C

main() {

SoElapsedTime *counter = new SoElapsedTime;
SoGate *gate = new SoGate(SoMFFloat::getClassTypeld());
gate->input->connectFrom(&counter->timeOut);

aboutY->angle.connectFrom(gate->output); -

SoRotor

@ root

Engines

rotor rotorX ball engine6.C

rotor->rotation.setValue(SbVec3f(0, O, 1), 0);
rotor->speed = 0.2;

SoPendulum Example

SoPendulum *pendulum = new SoPendulum:;

pendulum->leftExtent.setValue(SbVec3f(0, O, 1),
M_PI*1.5 - M_P1/4);

pendulum->rightExtent.setValue(SbVec3£(0, O, 1),
M_PI*1.5 + M_PI/4);

pendulum-~>speed = 0.2;

Engines

engine6.C

SoBlinker

@ root

blinker

Engines

Ieﬂ rlght engine6.C

YRR

blue leftX ball red rightX ball

Nodekits

presented by

Lew Hitchner

Node Kits

Modular organization of nodes into subgraphs

Efficient collections of nodes

Uniform structure

Code to generate scene graph is shorter and

easier to understand

Nodekits

Node Kit Classes

SoAppearanceKit
SoCameraKit

SolnteractionKit
— SoDragger

SoSeparatorKit
— SoShapeKit
— SoWrapperKit

SoLightKit
SoSceneKit

Nodekits

SoAppearanceKit Catalog

. SoAppearanceKit

Nodekits

“callbackList”

“lightModel” “texture2”

“environment” “complexity”

“drawStyle” “material”

tal

a
SoShape

(j é) Nodekits
R R ———————

Ly

T

Adding Parts

SoShapeKit *boxKit = new SoShapeKit;

Nodekits
boxKit->set(“material {diffuseColor 0.5 0.5 1.0}”);

boxKit->set(“material”, “diffuseColor 0.5 0.5 1.0”);

boxKit->set(“drawStyle {style LINES}”
“transform {scaleFactor 2.0 1.0 1.0}”);

Node Kit Example

// creating a scene graph as before

SoSphere *globe = new SoSphere;

SoMaterial *globeMat = new SoMaterial;
globeMat->diffuseColor.setValue(0.5, 0.5, 1.0);
SoTransform *globeX = new SoTransform,
gloveX->scaleFactor.setValue(2.0, 1.0, 1.0);
root->addChild(globeMat);
root->addChild(globeX);
root->addChild(globe);

// using a Node Kit

SoShapeKit *globeKit = new SoShapeKit;

globeKit->setPart(“shape”, new SoSphere);

globeKit->set(“material {diffuceColor 0.5 0.5 1.0}”
“transform {scaleFactor 2.0 1.0 1.0}”);

root->addChild(globeKit);

Nodekits

nodekit1.C

getPart()

e Returns a pointer to named part in the node kit

o TRUE creates part if not there; FALSE does not Nodekis
e Examples:
box = (SoShapeKit *) boxKit->getPart(“shape”);

SoTransform *dragX;
dragX = (SoTransform) (boxKit->
getPart(“transform”; TRUE));

setPart()

e Inserts node into node kit

e NULL pointer deletes node Nodekis

e Examples:

boxKit->setPart(“shape”, new SoSphere);

SoMaterial *newMat = new Material;
boxKit->setPart(“material”, newMat);

boxKit->setPart(“transform”, NULL);

Motion Hierarchy Scene Graph

' gears
‘ leftGear ‘ rightGear

Nodekits

nodekit2.C

leftGearShaft leftGearMark rightGearShaft rightGearMark

Motion Hierarchy Example

SoShapeKit *gears = new SoShapeKit;
gears->setPart(“shape”, NULL);
gears->set(“transform” {rotation 1 0 0 -0.7854}”);
root->addChild(gears);

// build left gear...

SoShapeKit *leftGear = new SoShapeKit;

leftGear->setPart(“shape”, new SoCylinder);

SoCylinder *cyl = (SoCylinder *)
leftGear->getPart(“shape” , TRUE);

cyl->radius = 2.0;

cyl->height = 0.3;

gears->setPart(“childList[0]”, leftGear);

Nodekits

nodekit2.C

Draggers and
Manipulators

presented by

Lew Hitchner

Draggers

Nodes in scene graph with special geometry and
user interface

Connect dragger fields to node fields or engines

Callback functions can be invoked when dragger
interaction starts or stops, when the mouse
moves, or when dragger fields change

Build complex draggers from simple ones
Create new draggers for different geometries

Draggers may be connected to anything, not just
geometry fields

Draggers &
Manipulators

Dragger Classes

Translations:

— SoTranslate 1Dragger, SoTranslate2Dragger
Scales:

Draggers &
— SoScale1Dragger, SoScale2Dragger, Manipulators

SoScale2UniformDragger, SoScaleUniformDragger

Rotates:

— SoRotateCylindricalDragger, SoRotateDiskDragger, draggert.C
SoRotateSphericalDragger

Combos:

— SoTrackballDragger, SoJackDragger,
SoHandleBoxDragger, SoTransformBoxDragger, etc

Lights:
— SoSpotLightDragger, SoPointLightDragger, etc -

Simple Dragger Scene Graph

Draggers &
Manipulators

dragger2.C

Simple Dragger Example

SoTranslate 1Dragger *dragger = new SoTranslate1Dragger;
root->addChild(dragger);

Draggers &
Manipulators

SoCube *cube = new SoCube;
root->addChild(cube);

//hook dragger to engine dragger2C
SoDecomposeVec3f *decomp = new SoDecomposeVec3f;
decomp->vector.connectFrom(&dragger->translation);

// ... and hook engine to cube
cube->width.connectFrom(&decomp->x);

Dragger Callbacks

Start callbacks:
— addStartCallback(), removeStartCallback()

Draggers &
Motion callbacks: Manipulators

— addMotionCallback(), removeMotionCallback()

Value-changed callbacks:

— addValueChangedCallback(),
removeValueChangedCallback()

Finish callbacks:
— addFinishCallback(), removeFinishCallback()

Dragger Callback Example

void dragStartCB(void *mat, SoDragger *) {
((SoMaterial *)mat)->
diffuseColor.setValue(1.0, 0.5, 0.5);}

Draggers &
Manipulators

void dragEndCB(void *mat, SoDragger *) {
((SoMaterial *)mat)->
diffuseColor.setValue(0.5, 1.0, 1.0);} draggerd.C
main() {
SoMaterial *boxColor = new SoMaterial;
boxColor->diffuseColor.setValue(0.5, 1.0, 1.0);
SoTranslate1Dragger *drag = new SoTranslate1Dragger;
drag->addStartCallback(dragStartCB, boxColor);

drag->addFinishCallback(dragEndCB, boxColor); -

Multiple Dragger Example

SoTransform *xTrans = new SoTransform;

XTrans->translation.setValue(0.0, -2.0, 4.0);

SoTranslate 1Dragger *xDragger = new SoTranslate1Dragger;
xSep->addChild(xTrans); xSep->addChild(xDragger); S
root->addChild (xSep); Manipulators

SoTransform *scale = new SoTransform, root->addChild(scale);

SoSphere *ball = new SoSphere; root->addChild (ball);

dragger4.C
SoCalculator *calc = new SoCalculator;
calc->A.connectFrom(&xDragger->translation);
calc->B.connectFrom(&yDragger->translation);
calc->C.connectFrom(&zDragger->translation);
calc->expression = “oA = vec3f(A[O], B[O]l, C[OD”;
scale->scaleFactor.connectFrom(&calc->0A); -

Manipulators

e Manipulators are instances of nodes with
interactively editable geometry

Draggers &
Manipulators

dragger5.C

Swapping Nodes and Manipulators

replaceNode() method replaces a node with its
editable version

replaceManip() restores the node with its new raggers
Values Manipulators

Example:
trackBall = new SoTrackballManip;
pathX = createPathtoTransform (pickPath);
track->replaceNode (pathX);

track->replaceManip(pathX, new SoTransform);

Types of Manipulators

e SoTransformManip replaces transformations

Draggers &
Manipulators

¢ SoPointLightManip, SoDirectionalLightManip,
and SoSpotLightManip replace lights

e Manipulators may be customized by replacing
geometry, but functionality may not be changed

Cool Nodes and
other topics

presented by

Chris Buckalew

Node References

Create nodes with the new operator, rarely on
the stack

A node’s reference count is incremented by:
Scene
— adding the node to a group Database
— including the node in a path

— manual reference with ref()

A node’s reference count is decremented by:

— removing the node from a group

— deleting a path containing the node

— manual dereference with unref()
Inventor automatically deletes a node when its
reference count is decremented to zero

Managing the Scene Database

Scene
DEIELER]

Problem: how to remove B from A and add to D?
Solutions: add B to D first, or manually increment B’s count
D->addChild(B); B->ref();

A->removeChild(B); A->removeChild(B);
D->addChild(B);

Managing the Scene Database (cont)

Scene
DEIELER]

Problem: how to delete A?

Solution: manually decrement A’s reference count. This also
decrements B and C by one

A->unref();

Managing the Scene Database (cont)

G B e C Scene
DEIELER]

Problem: Actions such as rendering create then delete paths.
This would increment then decrement A’s reference count
back to 0, deleting A.

Solution: manually increment A’s reference count. This mus
ordinarily be done to root nodes.

Managing the Scene Database (cont)

e Never allocate nodes, paths, or engines in arrays -~
causes problems when Inventor tries to delete one
element from the array

Scene
DEIELER]

Never declare nodes, paths, or engines on the
stack - may cause problems becasue nodes may
go out of scope before Inventor removes them
from the scene database.

Common problem is trying to access a node that
has been automatically deleted by Inventor.

Common Problem Example

SoSphere *buildSphere() {

SoSphere *ball = new SoSphere;

// ref count now O

Scene

ba = new SoGetBoundingBoxAction; Database
ba->apply(ball);

// ref count goes to 1 then back to O
box = ba->getBoundingBox;

// since ref count decremented to O, ball is deleted
return ball;
// here comes a core dump

Virgin Nodes

Sometimes we want to use a node but keep its
reference count at zero:

SoSphere *buildSphere() { Scene
Database

SoSphere ball = new SoSphere;
ball->ref();

ba = new SoGetBoundingBoxAction;
ba->apply(ball);
box = ba->getBoundingBox;

ball->unrefNoDelete();
return ball;

Subclasses of SoGroup

SoSwitch and SoBlinker

— traverses only one child
SoLOD

— different object resolutions at different distances Cool Nodes
SoArray and SoMultipleCopy

— traverse multiple copies of children
SoPathSwitch

— traverses children if current path matches path field
SoTransformSeparator

— saves and restores only transform state
SoAnnotation

— children traversed after rest of scene graph

SoSwitch and SoBlinker

SoSwitch visits only one of its children,
determined by the whichChild field

Default: whichChild = SO_SWITCH_NONE

Example: g
SoSwitch *switch = new SoSwitch;
switch~->addChild(A);
switch~->addChild(B);
switch->insertChild(C, 1);
switch->whichChild = 2;

SoBlinker includes an engine which automatically
cycles through children

SoLOD

Specify same object with different levels of detail

SoLOD is a subclassed group node; only one child
is traversed based on distance to camera Cool Nodes

range: array of floats determine changeover

points

center: point in object space with which distance
to camera is computed

SoDrawStyle

style:

— FILLED, LINES, POINTS, INVISIBLE
pointSize:

— radius of points; units are printer’s points Cool Nodes

— default is 0.0; uses fastest value for rendering
lineWidth:

— width in points, default is 0.0

nodes2.C
linePattern:

— 0xO0 to Oxffff for invisible to solid
Points and lines are best rendered with
BASE_COLOR lighting

SoLightModel

e model:
BASE_COLOR - ignores light sources and uses Coolodes
only diffuseColor and transparency values for

shading

nodes3.C

PHONG - uses all lights and surface normals to
compute shading

SoEnvironment

ambientIntensity
ambientColor

attenuation: vector of squared, linear, and
constant attenuation with distance from lights Cool Nodes
fogType:
— NONE
— HAZE: opacity linear with distance nodesd.C
— FOG: opacity exponential with distance
— SMOKE: opacity exponential-squared with distance

fogColor

fogVisibility: distance at which objects are totally

obscured -

SoComplexity

e Governs amount of tesselation for spheres,
cylinders, NURBS, etc.

o Fields:
— value: 0.0 is minimum tesselation and 1.0 is maximum | CoolNodes
— type:
OBJECT_SPACE
SCREEN_SPACE
BOUNDING_BOX
— textureQuality: filtering level
o Example shows SCREEN_SPACE and
OBJECT_SPACE complexities

nodes5.C

ShapeHints Node

vertexOrdering

— UNKNOWN_ORDERING

— CLOCKWISE

— COUNTERCLOCKWISE Cool Nodes
shapeType

— UNKNOWN_SHAPE_TYPE

— SOLID

faceType

— UNKNOWN_FACE_TYPE

— CONVEX

creaseAngle: adjacent facets share normal if angle
between normals less than this field -

nodes6.C

SoUnits

e Automatically scales objects with different units
so that they all display at the correct size

e unit:
METERS CENTIMETERS Grellietn
MILLIMETERS MICROMETERS
MICRONS NANOMETERS
ANGSTROMS KILOMETERS
FEET INCHES
POINTS YARDS
MILES NAUTICAL_MILES

Inventor File Format

Inventor’s file format is used for reading and
storing scene graphs, paths, or nodes to and from
ASCII files

Users can edit files rather than edit and recompile
programs

Complex scene geometry may be read in from
files modularly

File format is used for cutting and pasting
between windows or processes

File format is also used to specify node kit parts

File Format

Reading a File into the Database

SoNode* readlvFile(const char *filename) {
Solnput scenelnput;
SoDB::init();
if (T sceneInput.openFile(filename)) Fie Fomet
cout<<“problem opening file”<<filename;
SoSeparator *node = SoDB::readAll(&scenelnput);
if (T node) {
cout<<“problem reading file”<<filename;
scenelnput.closeFile();

return node;

File Format Example

Separator {
PerspectiveCamera {position O O -3.4496}
DirectionalLight{ }
Transform {
translation 3.89 -7.5 6.0
scaleFactor 1.0 1.0 2.5}
Separator {
Material {diffuseColor 1.0 0.5 1.0}
Sphere { }

File Format

Different Formats

e Formats for writing;:
— Engines
— Field connections File Format
— Global fields
— Shared instances of nodes
— Paths
— Node kits

e Can also read from a string

Event Handling

presented by

John Readey

Input Processing & Events

e Events are generated by the keyboard and mouse
(or other input devices)

e Many Inventor classes respond to events (e.g. Emng
Manipulators)

e The developer can overide the default behavior by
— Subclassing an Inventor class and modifying the
behavior

— Intercepting the event before it is processed by
Inventor

Inventor Events

e Window specific events (XEvents in UNIX,
messages in Windows NT/95) are translated by
the component library into Inventor specific
SoEvents.

Event

i B & . Handli
o Each SoEvent instance contains information on: e

— Type type of event (keyboard, mouse button, mouse
move, etc)

— The time the event occured

— The cursor position at the time of the event

— The state of the modifier keys (control, shift, alt) when
the event ocurred

Event Processing

MS Windows
messages

SoMfcRenderArea
Event Translator

Event
Handling

Window System Specific

Window System Independent
SoEvents
SoGLRenderAction::
SoHandleEventAction()
SoSceneManager \J

Picking using the SoSelection Node

e The SoSelection node is a group class that is
typically inserted near the top of the scene graph.
It handles any event that its children don’t
handle.

¢ It maintains a selection list of picked objects
according to a policy set in the policy field:

Event
Handling

— SINGLE: one object at a time, mouse pick on nothing
clears selection

— TOGGLE: multiple objects, left mouse pick toggles
selection status

— SHIFT: when shift key is down, policy is TOGGLE;
when shift key is up, policy is SINGLE

Selection Example

main()

SoSelection *sel = new SoSelection;
sel->policy = SoSelection::SHIFT;
sel->addSelectionCallback(selectCB, highMat); "

Handling

}
void selectCB(void *data, SoPath *selectionPath) { oSt e

SoMaterial *highMat = (SoMaterial *) data;
if (selectionPath->getTail()->isOfType(..sphere..)
highMat->transparency = 0.4;

Handling Events with Callback Nodes

e The SoEventCallback node can be inserted into a
scenegraph to provide application specific
behavior. The developer can provide a callback
function that will be invoked whenever the node Event
receives an event of the proper type. Handing

e Example:

// An event callback node so we can receive key press

// events

SoEventCallback *myEventCB = new SoEventCallback;

myEventCB->addEventCallback(
SoKeyboardEvent::getClassTypeld(),
myKeyPressCB, selectionRoot);

selectionRoot->addChild (myEventCB);

Bypassing Inventor Event Handling

e The application can intercept events (in the native
window system dependent format) before

Inventor receives them. Event
Handling

e Events can also be processed by the application
and then passed on to the Inventor event
handling mechanism.

SoMFC Event Handling Example

void
CDropView::OnMouseMove (UINT nFlags, CPoint point)
{
movement[0] = locator[O];
movement[1] = locator[1]; Event
locator[0] = windowSize[0] - point.x; sl
locator[1] = windowSize[1] - point.y;
if (mode == TRANS_MODE)
translateCamerac(); ST
else if (mode == ROT_MODE)
rotateCamera();

SoMfcView::OnMouseMove(nFlags, point);

Interfacing to the
Windowing System

presented by

John Readey

Inventor Component Library

e The Inventor Component Library contains
reusable modules with a built-in user interface.

Inventor
Component

e Component classes are typically window system Library
dependent.

e Typical Component classes include:
— Viewers for displaying a scene
— Editors to change properties of a node

Component Classes for Windows NT/95

PGI supplies two different component libraries
with Open Inventor for Windows NT

— WinSoXt

— SoMFC
WinSoXt includes classes compatible with the
SoXt classes on UNIX versions of Inventor.

WinSoXt classes are:

— Familiar (if you have experience with SoXt)

— Easy to use (your entire program can be just a dozen
lines)

The dark side:

— You don’t have access to native Windows features.

Inventor
Component
Library

Xt Components

o Editors:
— SoXtMaterialEditor
— SoXtMaterialList
— SoXtLightSliderSet Inventor
— SoXtMaterialSliderSet Esgfy"”e”t
— SoXtTransformSliderSet
e Viewers:
— SoXtFullViewer
— SoXtFlyViewer
— SoXtWalkViewer
— SoXtExaminerViewer
— SoXtPlaneViewer

MaterialEditor Example

e Pass values back with a callback, OR
e Attach the editor to a node directly

Inventor
Component
Library

SoXtMaterialEditor *headEdit = new SoXtMater...;
SoMaterial *headM = new SoMaterial;
headEdit->attach(headM);

complib1.C
renderArea->show();
SoXt::show(window);
headEdit->show();

SoXt::mainLoop(); -

SoMFC Components

e MFC is a widely popular C++ class library
developed by Microsoft and used for Windows-
based application development.

e SOMFC is an MFC Extension library that enables inventor

MFC based applications to incorporate Inventor. oot

e It includes more than 30 classes that provide:
— Viewers
— Editors
— Printing Support
— OLE Integration

The Document/View Architecure

The document and view classes are fundamental
to MFC.

Document classes are used to encapsulate the
data an application deals with. inventor

Component

View classes encapsulate how the data is Library
presented to the user.

Applications can be

— SDI (just one document and one view)
— MDI (multiple documents and views)

Integration of MFC and Inventor

e MFC applications typically consist of application
specific view and document classes derived from
the MFC classes CView and CDocument (or their
analogues).

Inventor
Component

To create an Inventor SOMFC application, the user | ;..

creates classes derived from the SOMFC classes,
SoMfcView and SoMfcDocument instead of
CView and CDocument.

The viewer instance (SoMfcRenderArea,
SoMfcViewer, SoMfcExaminerViewer, etc) is
contained in the SoMfcView object.

The Class Hierarchy

Inventor
Component

Library
SoMfcDoc SoMfcView SoMfcRenderArea

SoMfc Editor Classes

o Editor classes include
— SoMfcColorEditor
— SoMfcMaterialEditor Inventor
— SoMfcHeadlightEditor ﬁ;’[‘;‘ﬁ;’”em
— SoMfcMaterialPalette

— SoMfcTextureMapEditor

e Most of these classes have an interface and
functionality similar to their Xt counterparts.

SoMfc Viewer Classes

e SoMfc Viewer classes are always contained within
SoMfcView.

Inventor
Component

e They include Library

— SoMfcRenderArea

— SoMfcViewer

— SoMfcExaminerViewer
— SoMfcFlyViewer

— SoMfcPlaneViewer

— SoMfcWalkViewer

Using the Windows Clipboard

¢ Inventor scene objects can be cut or pasted into
the clipboard.

Inventor
Component

e When pasted into a non-Inventor application an Library
ascii~based file description of the nodes will be
displayed.

e When pasted into an Inventor application, the
nodes can be added to the current scene graph.

Inventor and OLE

OLE is an architecture developed by Microsoft

that allows different applications to inter-operate.

The OLE vision is to focus on documents, rather
than applications.

A common application of OLE is Object Linking

and Embedding. This allows an instance of an
OLE Server app to be placed into any OLE Client
Application.

Inventor based OLE Server applications can be
embedded or linked into OLE Client applications
such as Microsoft Word or Excel.

Inventor
Component
Library

Optimizing
Open Inventor

presented by

John Readey

Optimizing Performance

e These are some simple guidelines to performance
tuning

Optimizing
Open
e Keep in mind that performance characteristics inventor

will vary with platform and graphics adapter

Turn Culling On if Possible

e For parts of the scenegraph that consist of all
closed surfaces, turn backface culling on with the
ShapeHints node.

e For scenegraphs that contain shapes spread across
a large volume (e.g. a model of the solar system),
turn viewport culling on.

Use Shared Instancing

o If the same object is used repeatedly in your scene
graph, create only one instance of it

Optimizing
Open
e This is especially important for SoTexture2 nodes | ™entr

Use the new Vertex Property Node

SoVertexProperty was a new node introduced
with Inventor 2.1

The SoVertexProperty node is an efficient way to
specify attributes for vertex-based shape nodes

Properties that can be set include: coordinates,
normals, colors, transparency, material and
normal binding

Specify all fields for maximum performance

Optimizing
Open
Inventor

Vertex Property Node Example

SoVertexProperty *earVP = new SoVertexProperty;
// define material binding

earVP->normalBinding =

SoNormalBinding::PER_FACE; RAlE
// define the coordinates Inventor
earVP->vertex.setValues(0, 9, earVerts);
// define the colors

earVP->orderedRGBA.setValues(0, 8, earColors);

earFaceSet-> vertexProperty.setValue(earVP);

Optimize your .iv files!

e ivFix is a new utility provided with Inventor 2.1.1
that will re-organize your .iv file for maximum

performance Optimizing
Open
Inventor

e iVAddVP can be used to transform .iv files to use
the SoVertexProperty Node

e Run ivPerf to analyze performance

The Future of
Open Inventor

presented by

Silicon Graphics, Inc

Resources

e The Inventor Mentor and The Inventor
Toolmaker, by Josie Wernecke, Addison-Wesley
(also on-line on SGI machines)

o The Open Inventor C++ Reference Manual,
Addison-Wesley (on line as man pages)

e Web pages:

— Silicon Graphics: www.sgi.com

— Portable Graphics: www.portable.com
— Template Graphics: www.sd.tgs.com
— VRML home page: vrml.wired.com

http://vrml.wired.com
http://www.sgi.com
http://www.portable.com
http://www.tgs.com

	Programming Animation Programming Animation Programming Animation Programming Animation and Interaction in and Interaction in an
	Abstract
	Speakers
	Speaker Info

	Table of Contents
	Introduction
	Sensors
	Engines
	Nodekits
	Draggers and Draggers and Manipulators
	Cool Nodes and other Cool Nodes and other topics
	Event Event Handling
	Interfacing to the Windowing Interfacing to the Windowing System
	Optimization
	The Future of Open The Future of Open Inventor

