Welcome to
Scene Modeling Tools in
Open Inventor

Demo Course

Sponsored by
Portable Graphics Inc

Abstract

Open Inventor is a high-level cross-platform object-~
oriented 3-D interactive graphics and animation
toolkit. This course covers necessary knowledge
for creating and organizing scenes and objects in
Open Inventor, including scene graph
organization, shapes, properties, groups, lights,

cameras, textures, Windows interfacing, VRML,
and release 2.1 extensions. Basic concepts will be
anchored with demonstrations programs which
execute on one screen whild attendees examine
associated source code on another.

Speakers

e Chris Buckalew
— buckalew@calpoly.edu (805) 756-1392
— Computer Science Dept, Cal Poly State University
San Luis Obispo, CA 93407
e John Readey
— jlr@portable.com (512) 719-8000
— Portable Graphics Inc, 3006 Longhorn Blvd Suite 105
Austin, TX 78758
e Lew Hitchner
— hitchner@phoenix.calpoly.edu (805) 756-2824
— Computer Science Dept, Cal Poly State University
San Luis Obispo, CA 93407

Speaker Info

Chris Buckalew, Associate Professor
Chris Buckalew is an Associate Professor of Computer Science at Cal Poly State University in
San Luis Obispo. H received his Ph.D. in 1990 from the University of Texas. His research
interests include photorealistic image synthesis and scientific visualization.
Dr. Buckalew’s dissertation work was published in SIGGRAPH ‘89, and he ahs also published
several articles on realistic image synthesis, scientific visualization, and computer-assisted
lecture systems. He is currently engaged in building the undergraduate Computer Graphigs
program at Cal Poly, for which work he has received five consecutive annucal Outstanding
Professor awards, voted on by the students.

John Readey, Product Manager
John Readey is the Open Inventor Product Manager at Portable Graphics Inc. He graduated
from Ohio State University in 1989 with a M.S. degree in Computer Science. He spent the
next five years at IBM where he developed IrisGl, and OpenGL software for the RS/6000.
Since moving over to PGI in 1994, he has been engaged in Open Inventor porting issues,
Inventor extensions, and VRML.

Lewis E. Hitchner, Lecturer
Dr. Hitchner obtained the Ph.D. degree from the University of Utah where he did research in
3D digital image processing and computer graphics. He was a faculty member in Compute¢r
Science at UC Santa Cruz for five years, and he is currently a lecturer in the Computer Science
Department at California Polytechnic State University. His research and industrial
employment includes four years Virtual Reality research at NASA Ames Research Center, to
years in R&D for Xtensory Inc., and Sterling Software, Inc., and VR software development
consulting for Sense8 Corp. Recently he has designed and taught technical training courses in
VR software for Sense8 Corp. He is also the editor and author of ‘The Virtual Software Rep:
published by the VR NEWS of London, UK.

Table of Contents

What is Open Inventor? (Chris Buckalew)
Starting Out (Chris Buckalew)
The Scene Graph and Nodes (Chris Buckalew)
Lights and Cameras (Chris Buckalew)
Building Objects (Lew Hitchner)
Textures (Lew Hitchner)

New Developments (John Readey)

Participant Background

e Knowledge of C or C++

Introduction

e Basic computer graphics knowledge

e No graphics package or toolkit experience necessary

What is Open Inventor?

e Object-oriented 3-D interactive graphics toolkit

e Library of objects and methods to create
interactive 3~-D graphics applications

Introduction

e Standard across many vendors and platforms

Open Inventor Component Library

Node Kits Manipulators

Scene Database

Open Inventor
Open Inventor 3D Toolkit 3-D
Interchange
File Format

Object Database

Extensible variety of primitives

Objects can be picked, highlighted, and
manipulated

Introduction

Object calculations such as bounding boxes and
intersections may be performed

Objects may be printed, searched for, rendered,
and read to and from files

Animation and Interaction

e Animation

— Sensors

— Field connections

— Engines Introduction
e Interaction

— Sensors

— Callbacks

— Selection

— Draggers

— Manipulators

Open Inventor and OpenGL

OpenGL is low-level to take direct advantage of
graphics hardware

Open Inventor is higher-level for ease of use,
sophisticated applications, and speed of
construction

Introduction

Open Inventor renders scenes with OpenGL calls

Open Inventor includes much extra interaction
and animation functionality as well as the scene
graph conceptual framework

OpenGL is assembly language; Open Inventor is a
high-level language :-)

Open Inventor and VRML

e The 2.1 release of Open Inventor added new
classes useful for creating VRML applications:
— SOWWWAnchor
— SoOWWW!Inline
— SoAsciiText
— SoFontStyle

e The VRML 1.0 file format is supported

Introduction

Rendering Capabilities

Shapes:
— Sphere, cone, cube, cylinder
— Polyhedra
— Text and 3-D text
— NURBS curves and surfaces
— Extensible to user-defined primitives

Texture
Transparency
Access to all OpenGL rendering capabilities

Introduction

Sensors

e Timing sensors

— Automatic triggering of timed events

Introduction

e Data sensors

— Activate callback procedures when data changes

Engines

Simple engine: the field connection
— as one field changes, other fields hooked to it
automatically change

Introduction

Most engines involve some function between

connected fields

— Animation engines: real-time clock drives engines to
automatically update fields over time

— Arithmetic engines: inputs from selected fields are
to produce outputs that drive other fields

Extremely flexible
Encapsulates motion into metafile format

Draggers and Manipulators

e Scene geometry that has built-in user interface
and resulting actions

Introduction

e Dragger output may be connected to any field for
variety of applications

e Manipulators allow interactive editing of certain
nodes

Nodekits

Organize nodes into subgraphs, (like functions in
computer languages)

Introduction

Nodes are laid out in an efficient manner

Resulting code is shorter and easier to understand

Nodekits may be subclassed to create your own
nodekit types

Event Handling

Automatic event handling

— Selection node and manipulators

Introduction

Callbacks triggered by specific events

Bypass Inventor event handling and receive
events from the window system directly

Callback nodes can trigger events during scene
graph traversal

File Format

Stores scene geometry, engine motion, and
automatic event handling

Introduction

Frequently faster to edit IV files rather than edit,
recompile, and run programs

File format is used for cutting and pasting
between windows or processes

Also used to specify nodekit parts

Many converters are available

Component Library

Contains functions to communicate with the
windowing system

Includes variety of viewers and editors Inroduction
Utility functions to manage windows

Functions to customize the windows with
toolbars, buttons, and menus

Originally X-Windows; currently mature ports
for Windows95 and NT with more planned

Extensibility

Create new shapes and nodekits

Create property nodes that change current
traversal state

Create new group nodes that change order of
traversal

Create new traversal action

Create new engines

Create new draggers and manipulators
Create new components

Create new events and devices

Introduction

Starting Out

presented by

Chris Buckalew

A Complete Program

#include <Inventor/Xt/SoXt.h>
#include<Inventor/Xt/SoXtRenderArea.h>
#include<Inventor/nodes/SoCone.h>
#include<Inventor/nodes/SoDirectionalLight.h>
#include<Inventor/nodes/SoMaterial. h>
#include<Inventor/nodes/SoPerspectiveCamera.h>
#include<Inventor/nodes/SoSeparator.h>

main(int argc, char **argv) {
Widget window = SoXt::init(argv[O]);
if (window == NULL) exit(1);

//Make a scene containing a red cone

SoSeparator *root = new SoSeparator;

SoPerspectiveCamera *camera = new SoPerspectiveCamera;
SoMaterial *material = new SoMaterial;

Starting Out

intro1.C
(from

Inventor
Mentor)

A Complete Program (continued)

root->ref();

root->addChild(camera);
root->addChild(new SoDirectionallight);
material->diffuseColor.setValue(1.0, 0.3, 0.3);
root->addChild (material);
root->addChild(new SoCone);

Starting Out

intro1.C
(from

SoXtRenderArea *rarea = new SoX{RenderArea; Inventor
. . . Ment
camera->viewAll(root, rarea->getViewportRegion()); entor)

rarea->setSceneGraph(root);
rarea->show();

SoXt::show(window);

SoXt::mainLoop(); -

Make the Cone Spin

#include <Inventor/engines/SoElapsedTime.h>
#include <Inventor/nodes/SoRotationXYZ.h>

main(int argc, char **argv) { Stariing Out

intro2.C

SoRotationXYZ *rotate = new RotationXYZ; (fom

Inventor
Mentor)

root->addChild (rotate);

rotate->axis = SoRotationXYZ::X;
SoElapsedTime *counter = new SoElapsedTime;
rotate->angle.connectFrom(&counter->timeOut);

Adding a Manipulator

#include <Inventor/engines/SoTrackballManip.h>
Starting Out
main(int argc, char **argv) {

intro3.C
(from

root->addChild (new SoTrackballManip); Inventor

Mentor)

Viewing with the ExaminerViewer

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
Starting Out

main(int argc, char **argv) {

intro4.C
(from
Inventor

SoXtExaminerViewer *viewer = Mentor

new SoXtExaminerViewer(window);

Naming Conventions

Basic types begin with Sb (Scene basic):
— SbVec3f, SbColor

Starting Out
Other classes begin with So (Scene object):

— SoCone, SoMaterial, SoTransform

Methods, variables, and fields begin with
lowercase; included words are capitalized:
— setValue(...), firstCube, .diffuseColor

Enumerated types are all uppercase:
— FILLED, X, COUNTERCLOCKWISE

The Scene Graph

presented by

Chris Buckalew

A Simple Scene Graph

The Scene
Graph and
Nodes

graph1.C

Types of Nodes

e Shape nodes

— rendered using current state when traversed

° Property rlOdeS The Scene
Graph and

— change the current state Nodes

e Group nodes
— govern order of traversal
— some group nodes save and restore the current state

Creating Nodes

// make a head
SoSphere *hSphere = new SoSphere;

The Scene
Graph and

//stretch it Nodes
SoTransform *headX = new SoTransform;
headX->scaleFactor.setValue(5.0, 7.0, 5.0); graphi.C
//color it

SoMaterial *headM = new SoMaterial;
headM->diffuseColor.setValue(0.9, 0.7, 0.6);

Building a Scene Graph

// make the root
SoGroup *head = new SoGroup;

The Scene
Graph and
Nodes

// other nodes have been created already

graph1.C

head->addChild (headX);
head->addChild (headM);
head->addChild (hSphere);

Node Fields

e SoSphere:
radius
e SoTransform:
translation The Scene
rotation Graph and
scaleFactor Hodes
scaleOrientation
center
e SoMaterial:
ambientColor
diffuseColor
specularColor
emissiveColor
shininess
transparency

Shape Node Classes

SoBase — SoCone
| — SoCube
SoFieldContainer SoCylinder S
| SoSphere Nodes
SoNode SoText2
| SoText3
‘:’ SoShape SoNurbsCurve
-~ SoNurbsSurface
SoIndexedNurbsCurve
SoIndexedNurbsSurface
SoVertexShape

|

Shape Node Classes (cont)

— SoFaceSet

— SoLineSet
SoNonIndexedShape— SoPointSet o Seane

— SoQuadMesh Graph and
- SoTriangleStripSet Nodes

— SoIndexedFaceSet
SoIndexedShape% SoIndexedLineSet

SoIndexedTriangleStripSet

Property Node Classes

— SoBaseColor
SoBase = SoCompl_exﬁy
| SoCoordinate3

SoCoordinate4 The Scene
Graph and

Nodes

SoFieldContainer
| SoDrawStyle

SoNode SoEnvironment
SoFont
SoLightModel
SoMaterial
SoMaterialBinding
SoMateriallndex
SoNormal
SoNormalBinding
SoPickStyle — SoLinearProfile
SoProfile SoNurbsProfile

Property Node Classes (cont)

SoProfileCoordinate2
SoProfileCoordinate3
SoShapeHints

SoTexture2
SoTexture2Transform
SoTextureCoordinate2
SoTextureCoordinateBinding
SoTextureCoordinateFunction
SoTransformation
SoUnknownNode

— SoMatrixTransform

The Scene
Graph and
SoResetTransform Nodes

SoRotation
SoRotationXYZ
SoScale
SoSurroundScale
SoTransform
SoTranslation
SoUnits

Group Node Classes

SoBase

SoFieldContainer — SoArray
| SoLevelOfDetail

SoNode SoMultipleCopy
SoPathSwitch

|
O SoGroup SoTransformSeparator
SoSeparator

SoSwitch

SoAnnotation
SoSelection

The Scene
Graph and
Nodes

Combining Groups

@~

The Scene
Graph and
Nodes

nosc

hatM hCone noseX nBox headX headM hSphere

Combining Groups Example

SoGroup *root = new SoGroup;
SoGroup *hat = new SoGroup;
hat->addChild (hatM);
hat->addChild (hCone); The Scens
root->addChild (hat); Graph and
Nodes
SoGroup *nose = new SoGroup;
nose->addChild(noseX)
nose->addChild(nBox);
root->addChild(nose);

graph2.C

SoGroup *head = new SoGroup;
head->addChild(headX);
head->addChild (headM);

head->addChild(hSphere); -
root->addChild(head);

Separators

O root
The Scene

hat head Graph and

Nodes

S0 boodd -

hatM hCone headX headM hSphere mnoseX nBox

Shared Instancing

root

The Scene
hat eyes head Graph and

Nodes

hatM hCone headX headM hSphere noseX nBox

@ eyeM @ eyelX @ eye2X

eyeSphere -

Paths

root

The Scene
hat eyes head Graph and

Nodes

hatM hCone headX headM hSphere noseX nBox

eyeSphere -

Fields within a Node

e Floats, Longs, and Shorts

SoCube *box = new SoCube;

The Scene
Graph and
Nodes

// setting fields
box->width = 4.0;
box->height.setValue(6.5);

// getting fields
SoSFFloat size = box->width;

float distance = box->height.getValue;

Fields within a Node

e Vectors

SoTransform *Xform = new SoTransform,

// set from a vector

SbVec3f vector; ;f::pic::j
vector.setValue(1.5, 3.2, 4.3); Nodes
Xform-~>translation.setValue(vector);

Xform-~>translation = vector;

Xform-~>translation.setValue(SbVec3f(1.5, 3.2, 4.3);

// set from three floats
Xform-~>translation.setValue(1.5, 3.2, 4.3);

// set from an array of floats
float array[3] = {1.5, 3.2,4.3};
Xform->translation.setValue(array);

Fields within a Node

e Rotations
SbRotation rot;
SbVec3f axisX(1.0, 0.0, 0.0);
SbVec3f axisY(0.0, 1.0, 0.0); The Scene
float angle = M_PI, ﬁ‘:j‘;’;a”d
// using the setValue method
rot.setValue(axisX, angle);
rot.setValue(axisX, axisY);

// using the constructor
SbRotation rot1(SbVec3£(1.0, 0.0, 0.0), M_PI);

// rotation one vector into another
SbRotation rot2(SbVec3f(1.0, 0.0, 0.0), SbVec3£(0.0, 1.0, 0.0));

Lights and Cameras

presented by

Chris Buckalew

Cameras

o useful SoCamera fields
— position

— orientation
Lights and

— nearDistance Cameras

— farDistance
— focalDistance
— aspectRatio cameras.C

o useful SoCamera methods

— pointAt()
— viewAll()

Camera Types

e SoPerspectiveCamera Lights and

— heightAngle field determines field-of-view (CENEES

e SoOrthographicCamera
— height field determines width-of-field

Lights

o A light illuminates nodes that follow it in the

scene graph
Lights and
Cameras

e Light positions and orientations are affected by
the current geometric transformation

e Lights accumulate

Light Fields

SoLight

— on

— intensity

B COIOI‘ Lights and
SOPOlntLight Cameras

— location

SoDirectionalLight —
— direction

SoSpotLight

— location

— direction

— dropOffRate

— cutOffAngle -

Building Objects

presented by

Lew Hitchner

Face Set

Building
Objects

vertices[12][3]

SoFaceSet:
numVertices: {4, 4, 4}

Face Set

Building
Objects

objects1.C

faceSet

Face Set Example

SoSeparator *makeEars() {
float earVerts[24][3] = {{1.0, 0.0, 0.0},...};
long numEarVerts[8] = {3,3,3,3,3,3,3,3};

Building
SoCoordinate3 *earCoords = new SoCoordinate3; Objects

earCoords->point.setValues(0, 24, earVerts);
ears->addChild(earCoords);

objects1.C
SoFaceSet *faceSet = new SoFaceSet;

faceSet->numVertices.setValues(0, 8, numEarVerts);
ears->addChild (faceSet);

return ears;

Indexed Face Set

Building
Objects

vertices[8][3]

indices[15] = {0, 1, 3, 5, SO_END_FACE_INDEX,...}

SoFaceSet:
coordIndex: 15

Indexed Face Set Example

SoSeparator *makeEars() {
float earVerts[9][3] = {{1.0, 0.0, 0.0},...};
int earIndex[32] = {0, 1, 2, -1, ...};

Building
SoCoordinate3 *earCoords = new SoCoordinate3; Objects

earCoords->point.setValues(0, 9, earVerts);
ears->addChild(earCoords);

objects2.C
SolndexedFaceSet *faceSet = new SolndexedFaceSet;

faceSet->coordIndex.setValues(0, 32, earIndex);
ears->addChild (faceSet);

return ears;

Triangle Strip Set

Building
Objects

2
vertices[6][3]

SoTriangleStripSet:
numVertices: 6

Triangle Strip Example

SoSeparator *buildSmile() {
float smileVerts[28][3] = {{1.0,0.8, 1.0}, ...}
int smileIndex[3] = {8, 10, 10};

Building
Objects
SoCoordinate3 *smileCoords = new SoCoordinate3;

smileCoords->point.setValues(0, 28, smileVerts);
smile~->addChild (smileCoords);

objects3.C

SoTriangleStripSet *mesh = new SoTriangleStripSet;
mesh->numVertices.setValues(0, 3, smilelndex);
smile~->addChild (mesh);

return smile;

Quad Mesh

Building
Objects

vertices[8][3]

SoQuadMesh:
verticesPerRow: 4
verticesPerColumn: 2

Quad Mesh Example

SoSeparator *buildRuff() {
float ruffVerts[34][3] = {{0.0, 2.0, 1.0}, ...};

* —_ .
SoSeparator “*ruff = new SoSeparator; Buiding
Objects

SoCoordinate3 *ruffCoords = new SoCoordinate3;
ruffCoords->point.setValues(0, 34, ruffVerts);
ruff->addChild (ruffCoords);

objects4.C

SoQuadMesh *quadMesh = new SoQuadMesh;
quadMesh->verticesPerRow = 17;

quadMesh->verticesPerColumn = 2;
ruff->addChild (quadMesh);

return ruff; } -

Order of Transformations

Within the SoTransformation node, the fields are
applied so that the last field affects the object first:

Building
Objects

translation
rotation
scaleFactor
scaleOrientation

center

Accumulating Transformations

e In the scene graph, transform nodes closest to the
object (and to the left) affect it first

@ root Building

Objects

objects5.C

transX rotX scaleX scaleX rotX fransX

NURBS Curves and Surfaces
Non-Uniform Rational B-Spline

Includes B-Splines, Beziers, and others Buiding

Objects

Curves in 3-Space

Surfaces in 3-Space

Trimmed surfaces

Types of Curves

e Uniform cubic B-spline:
— float pts[7][3] = {{-6.0,-6.0, 0.0}, ...}; "
uilding
— int knots[11] = {0, 1, 2, 3,4, 5,6, 7, 8,9, 10}; Objects

e Cubic B-spline that interpolates endpoints:
— float pts[71[3] = {{-6.0, -6.0, 0.0}, ...}; nurbst.C
— int knots[10] = {0,0,0,0, 1,2, 3,4,4,4,4};

e Cubic Bezier curve:
— float pts[4][3] = {{-6.0, -6.0, 0.0}, ...};
— int knots[8] = {0,0,0,0, 1,1, 1, 1}; -

Curve Scene Graph

6 root

Building
Objects

controlPts

controlPts[7][3]

SoNurbsCurve:
numControlPoints: 7
knotVector: {0,0,0,0,1,1,1,1}

Surface Scene Graph

6 root

Building
Objects

controlPts surface

conirolPts[16][3]
SoNurbsSurface:
numUControlPoints: 4

nurbs2.C

numVControlPoints: 4
uKnotVector: {0,0,0,0,1,1,1,1}
vKnotVector: {0,0,0,0,1,1,1,1} -

Trimmed NURBS Surfaces

Profile curves trim surfaces
Profile curves are defined in parameter space
Must form closed loop

Clockwise loop cuts a hole in the surface;
counterclockwise loop trims off edges

Profile curves may be nested but cannot intersect
themselves or each other

Profile nodes are SoLinearProfile or
SoNurbsProfile

Building
Objects

nurbs3.C

2~-D Text

e Screen-aligned 2-D text; does not vary in size
with camera movement

Building

e SoText2 fields: Obiects
— string;: text to display

— spacing: distance between lines of text
— justification: LEFT, CENTER, RIGHT

e SoFont fields:
— name: fOI’lt namec

— size: in points

2-D Text Example

SoSeparator *twoDText() {
SoSeparator *text = new SoSeparator;

SoFont *font = new SoFont; 2;;':289
font->name.setValue(“Times~-Roman”);
font->size.setValue(24.0);

text->addChild(font); text1.C

SoText2 *word = newSoText2;
word->string = “Open Inventor”;
text->addChild(word);

return text; } -

3-D Text

e 3-D text has depth and can be scaled; does not
always remain parallel to the screen
Building
Objects

e SoText3 fields:
— string: text to display

— spacing;: distance between lines of text tex2.C
— justification: LEFT, CENTER, RIGHT

— parts: FRONT, SIDES, BACK, ALL

3-D Text Profiles

e Defines the shape of the sides of the 3D text

e Uses SoLinearProfile or SoNurbsProfile Building
Objects

text3.C

font profCoords linearProf word

3-D Text Example

const float pts[5][2]=
{{0,0},{0.25,0.25},{0.5,0.15},{0.75,0.25},{1,0} };
const int indices[5] = {0, 1, 2, 3, 4};
Building

Objects
SoProfileCoordinate2 *profCoords = new

SoProfileCoordinate2;
profCoords->point.setValues(0, 5, pts);
text->addChild (profCoords);

text3.C

SoLinearProfile *linearProf = new SoLinearProfile;
linearProf->index.setValues(0, 5, indices);

Textures

presented by

Lew Hitchner

Textures

o A texture is a 2-D array of pixels in parameter
space

Textures

o Texture pixels are mapped onto surfaces

texture1.C

Scanned Texture Example

main() {

// get texture from file eriires
SoTexture2 *postcard = new SoTexture2;
root->addChild (postcard);
postcard->filename.setValue(“postcard.rgb”); |

root->addChild (new SoCube);

Texture Effects

e MODULATE: multiplies texture color and object’s
shaded color, including transparency
— example: box color (0.7, 1.0, 0.3) modulated by
texture colors (1, 1, 1) and (1, 0, 0) Textures
e DECAL: replaces object’s shaded color with T
texture color. Texture alpha component textured C
determines texture transparency -
— example: box color replaced by texture colors
e BLEND: texture intensity blends between object’s
shaded color and a constant blend color

— example: box color blended by texture intensities
1 and O with blend color (0, O, 1)

Texture Components

one-component: intensity only
two-~-component: intensity and transparency
three-component: RGB values
four-component: RGB and transparency

MODULATE is used with all types
DECAL is used with 3~ and 4-component textures
BLEND is used with 1~ and 2-component textures

Textures

Building Textures from Scratch

Three~-component texture:

SoTexture2 *texture = new SoTexture;
Textures

unsigned char image[| = {
255, 255,255, 0,0,0,
0,0,0, 255, 255, 0} ;

texture6.C

texture->image.setValue(SbVec2s(2, 2), 3, image

[6f7]8] [o]to]11]
EIENE]

Example shows a 4-component texture with transparency -

Transforming Textures

e Textures are transformed with the
SoTexture2Transform

Textures

e SoTexture2Transform fields:
— translation
— rotation
— scaleFactor
— center: center of scale and rotation

Transforming Texture Example

main() {

SoTexture2 *texture = new SoTexture2;

texture->image.setValue(SbVec2s(2,2), 3, image); redes
SoTexture2Transform *tranX =

new SoTextureZ2Transform,;
transX->rotation.setValue(M_PI / 6.0);
transX->scaleFactor.setValue(8.0, 8.0);

texture7.C

root->addChild (transX);
root->addChild (texture);

root->addChild (new SoCube); -

Explicit Texture Coordinates

e Textures may be attached manually to vertices of
objects

Textures

e For each object vertex, a corresponding texture
coordinate pair must specified (in texture
parameter space

texture8.C

Explicit Texture Coordinates Example

SoCoordinate3 *coords = new SoCoordinate3;
coords->point.set1Value(0, SbVec3f(-2, -2, 0));
coords->point.set1Value(1, SbVec3f(2, -2, 0));
coords->point.set1Value(2, SbVec3f(2, 2, 0)); Textures
coords->point.set1Value(3, SbVec3f(-2, 2, 0));

SoTextureCoordinate2 *texCoord = new SoTextureCoord...
texCoord->point.set1Value(0, SbVec2f(0.0, 0.0));
texCoord->point.set1Value(1, SbVec2f(1.0, 0.0));
texCoord->point.set1Value(2, SbVec2f(1.0, 0.5));
texCoord->point.set1Value(3, SbVec2f(0.0, 0.25));
texBin-~>value.setValue(
SoTextureCoordinateBinding::PER_VERTEX); -

texture8.C

Texture Coordinate Functions

o Allow you to specify texture coordinates
implicitly rather than explicitly

Textures

e SoTextureCoordinatePlane: project the texture
through a plane

e SoTextureCoordinateEnvironment: specifies a
spherical environment map

SoTextureCoordinatePlane

o ficlds:
directionS: projection direction of S coordinate
defaultis (1.0, 0.0, 0.0)

Textures

directionT: projection direction of t coordinate
defaultis (0.0, 1.0, 0.0)

texture9.C

e repeat interval is length of direction vector

SoTextureCoordinatePlane Example

SoTextureCoordinatePlane *texPlanel = new ...
root->addChild(texPlane1);
root->addChild (new SoSphere);

Textures

// translation here s,
SoTextureCoordinatePlane *texPlaneZ = new ...
texPlane2->directionS.setValue(SbVec3f(1, 1, 0));
texPlane2->directionT.setValue(SbVec3f(0, 1, 1));
root->addChild(texPlane2);

root->addChild(new SoSphere);

texture10.C

SoTextureCoordinateEnvironment

e Simulates a raytraced image by texture-mapping
on an object a pattern that appears to be a
reflection of the scene around the object

Textures

Uses a spherical reflection map, which must be
created separately

texture11.C

Works well in static environments, but if camera
moves or the environment near the object
changes the reflection map must be recomputed
and reapplied

Recent
Developments

presented by

John Readey

Resources

e The Inventor Mentor and The Inventor
Toolmaker, by Josie Wernecke, Addison-Wesley
(also on-line on SGI machines)

o The Open Inventor C++ Reference Manual,
Addison-Wesley (on line as man pages)

e Web pages:

— Silicon Graphics: www.sgi.com

— Portable Graphics: www.portable.com
— Template Graphics: www.

http://www.sgi.com
http://www.portable.com
http://www.tgs.com

	Scene Modeling Tools in Scene Modeling Tools in Scene Modeling Tools in Scene Modeling Tools in Open Open Open Open Inventor
	Abstract
	Speakers
	Biographies

	Table of Contents
	What is Open Inventor?
	Starting Out
	The Scene Graph and Nodes
	Lights and Cameras
	Building Objects
	Textures
	New Developments

